HEWLETT-PACKARD

Assembly Language 1/0O
Reference Manual

HP-83/85

[éﬂ HEWLETT

PACKARD

Assembly Language
1/0 Reference Manual

HP-83/85

November 1982

Reorder Number
BAEBS-98818

Printed In U.S5.A. ©Hewlett-Packard Company 1982

CONTENTS

Section

Page
I INTRODUCTION
e (%8s Overview Of LOW-Level I/0ueeceeenoeonseenonssos S G e 1-1
1.2 Interface Functional DESCEIPEION wiomresanmsaiis SR A T 1-2
1.3 Interpreting the Translator PVEE ianiane s e sl asi selvve e 1-3
1.4 RAM Hooks Available to the I/0 Pragianmmets o e aiiiili s snnsnn 1=
1.4.1 et N Y L s T e 1-7
1.4.2 I0SP ‘(1E24B7) . vuvensiosss T S T e S T T e e A T A R e . 1-12
12473 NEWIRE. . e eevnsmeasion R e e S T e S S I=14
IT I/0 PROCESSOR COMMANDS AND PROTOCOL
251 Communications Protocol Between the CPU and the IOP 2=1
2.2 Command Protocol FloMelarts: ot ee i mes oot onoe s oo s s 2=3
2.3 10 Pracessor: Commanas s:iseeishso s oiie e moinie e e e st 2-9
2.3.1 Heas: SLalUG | B0 L et vt e ai L L 2=8
eidad snpat VAN T o e e R TN) 2-9
S o Ta ol R R 0 T RS S G R S S D L ek 2=-19
2.3.:4 FEEn o2 T sl g o) DURRIE T 0 e N SR I b e T T 2-18
2o 34D Interface Control "B 1 018 ..eeeereosonesescrss AETe R A bR A e 2-11
2.3.8 Reallh AURTERArT ' BIL Z'T (1 ereiee hoee vn i e sk et & saw 2=l
2357 WEILE COntEBl LITT eueenevisorssnssosss] T T A R R e A L 2=X1
2.3.8 OBEOHE T BT B e e e BT e e e TR e s i T
2.3.9 Bend Commands 1 B 1 I ..cvsvenen BRI e e e e S e e 2-12
2a 31l Weite AFITIAEY LB W o e et e e e b e o e S DR 2=12
2.4 What Happens When the I/0 Processor Interrupts the CPU? 2=13
II1 PERFORMING I/0 OPERATIONS
Il 2530 g2 13 Ted kAR A e e gy e) e . L T 3-1
3.2 I/0 Operation Flowcharts ..oceeesesesss o e i e T 3-1
F:2 I/0 Operations: Utilities and Sample COHE seveeaeveenesnonessss 3-13
3.3.1 Register Conventions 21 K e e m e waaela e e eia e o aTesae i ate 3=13
3.3.2 Interrupting Versus Noninterrupting IOP COMMANdS «eeewseeoess 3-13
3.4 Definition of an I1/0 Operaticn Ty e 3-14
3.4.1 Command Handshaking Utility Subroutines v 5 sianTuip et ve 3=15
3.4.2 Status and Control OperationsS eeeessececsssesss W e e e 3=18

e T P
N A = A
. = 8 a e T ™

-
-

Lo L) Ll e Lt el L L L L G
L]
o AD 00 =] U ek

v

4.1
4.2

Status and Control Utility Subroutinesccccececcarnnnn. 3-19
Special Control Operations Not Available With BASIC 3-20
Bimple INpUuL/O0ERPOL & ae s vaiesaie e saessnie A B N S8 F=27
Simple Input and Simple Gutput Utility Subroutines seeceeess 3=-27
Primary Addressing and HP-IB Interface MeSSagesseceeess 3-28
Primary Addressing and Interface Message Subroutines 3-38
Miscellaneous I/0 UtiliCies .c.cecsanscnvsns b e ey aaa e o aaiae | S
Burst Input/Output e e e e e e S S e G «o 3—34
Burst-In and Burst—Out Utility Subroutinescscesseseass 3-37
Burst Command Protocol T N e R b alaieialataaTe aale e 3-39
Burst Execution Speed ...s:42. TN AL o K PR b s P 3-408
Interrupting OperationsS ...csscsasss shnaeaaaanianeissiseaieiana 3-40
Simulation of L[/0 RHOM StatementsS cveessessssssssansns WlafiTaslata 3-48
Timing Methodology ..scecccscscsssssmsnenssscancans S aleate e iin 3-52

SAMPLE CODE

Introduction I R R A R R R R R R] #e s e s s 4-1
KeywordS .eeececsccssssscsssancnnnons e L T T et 4-1

U 15

ILLUSTRATIONS

Figure

R
Lad [nd

|

PG maeeRy
N e L)

|
H o= WD B0 <] OV LT B L M

[l =]

L g Gl L L e
I

iv

Title
/0 HardWare DIAQLAm eieen s vessiieiesliioesiesssess e e
Calculator Control Register 1 P S
Processor ‘Status Reglster: s s vaseessisssnmessmenes R
izt S IR) BN R el P P e U Gy e B DG T T T p
Command Handshake i e R il
Revive An Interrupted IOP .cevescsscocsas e T alini A AR .
Ity rupt- Sarvice T RONELING .04 cenner e nnnnesss sissies e
Interrupt - DUERUE o oo anive v sivs s T A T e el T T e
EREerFuptE - TnEnE e swessssn s R W T A T B T T R A
BERd BEATUS wuevvevrasiesaimiveasmsmams s s b P S L
SIABIE INDU Srenceiirmeruieeio.s o seiis e s v sl by s e b s e g ars
BREEE Tl i iaree s b ateaterad aba, whalala s bt ute e e vmatarare i oo Sra i i s
BUrsSE TOBDE ooonineveiee sl v sleeeis e et uee v e Srmiig=as R
Dizsable ALl InEerPrBPES Cocdirmivania it st coalsdaenie s T
Re-enable All Interrupts iiicissyisveressiias s oln mw b R AT R e e R AT
Write: Controll oo el e vesietis e P T s L e BTt e R
Initiate IRterrupt: THEOE (@ siic e s sees s s an e neessenseaics s
Initiate INEerEupErGUERRL | | .. e cinis s eina e I T -y dn s e
Send: BYte ColiNt cisssiescnemnsssassesns e P e
e e ey) P P I UL L T

TABLES

Title Page
Translator Addressing ..---ccceeennsnnss P P e e e L L 1-6
Select Code Byte Interpretabion ..sccsesresrersccccnccnncnnass 1-8
Command BYEES cveescnsasnsarsscscsssssssssmnsasssnssscsnnansan =2
Interface Control FieldS sessesssscsscsnsaanasnss a e ela e e ATE S aTh R 2=-11
I0P Interrupt Byte .ccessvevenre S s S g S g P e 2=l
Execution Times (milliseconds) s.ececssncnsnas Mo e o o 3-18
E}Cecuticn T.i.FEIE.':‘r --------------- R E S E RS B oE oE B E B B W S E s ow s e E s 3—'31
Execution Times for HP-IB Interface Operations ..ieesscccecsens 3-34

v/vi

Section

INTRODUCTION

G e £ Overview of Low-Level I/0

The purpose of this manual is to document HP-83/85 input/output operations.
For example, you may need to speed up a specific data transfer, or do a
custom I/0 operation. These are problems that cannot be solved with a
BASIC program and an I/0 ROM. This manual should be used with the
Assembler ROM manual (your reference for writing binary programs).

This documentaticn is arranged in the following sections:

Section I. Introduction—Read this section first. It is an overview of
how I/0 is used on the HP-823/85.

Section II. 1/0 Processor Commands and Protocol--Use as a reference for
the commands that communicate with the I/0 processor on each interface
card, and the protocol for communications in this multi-processor system.
You will find a flowchart outlining the protocol required to pass a command
to the I/0 processor. Refer back te this section after you analyze your
1/0 operation using sectien 3.

Bection III. Performing I/0 Operations—Each I/0 operation is discussed
along with the programming steps required for execution., You will find a
detailed discussion of simple input/output coperations, burst input/eoutput,
interrupt operations, and status and control operations. Documentation on
the fastest rates possible to do I/0 operations for -each interface 1is
included, as well as sample I/0 utilities.

Section IV. 2 Sample Program——This example contains simple, burst, and
interrupt transfer routines. It also includes a hardware vector hook
interrupt service routine, and other general purpose utilities such as a
variable set-up utility.

If you are trying to speed up an 1/0 operation, you should first make sure
the computer is capable of attaining your speed reguirements. To do this,
compare your requirements with the rates documented in section 3.

Section 1: Intreoduction

A tradeoff of speed is required to gain the power of wusing BASIC with the
If@ RDM: The more general your application, the more speed you will gain
using binary code. For example, if you are doing a SIMPLE ENTER from a
GPIO interface at select code 4 (ENTER 4 in BASIC), you can write a binary
program that sends a SIMPLE INPUT command and handshakes each byte into a
string variable until the GPIO device is out of data or the string is full.
This program bypasses the extra image checking, data formatting, and other
?ptions that the I/0 ROM allows, making execution at least three times
aster.

Once you have determined the feasibility of your requirements, use the
following guidelines:

1. Read section 1.

2. Refer to the appropriate flowchart and sample code in
section 3.

3. Use section 2 as a reference for commands and protocol.

4. Design a program using the example in section 4.

5. Code and debug your program.

1.2 Interface Functional Description

The purpose of interface operations is to transfer data between computer
memory and some other device or devices. The scurce or destination of the
data may be a data storage area (buffer) in RAM or direct program
interaction.

Interface devices use a variety of methods to communicate. Different
interfaces are available with selectable options to allow customizing to a
specific method of communication.

BEetween the interface and the computer, every attempt has been made to have
only one method of communication. The only difference between interfaces
{as seen by the HP-83/85 low level code) 1is their respective interface
select code numbers which do not affect interface type. Even though
different interfaces have different capabilities, they all speak the same
language. For example, consider the statement:

OUTPUT 5 ; "1"

If there is a serial interface at select code 5, then the ASCII character
"1" will be output serially. If there is a BCD interface at select code 5,
then "1" will be output as a BCD digit. In both cases the computer program
operations (data values and instructions executed) are identical.

To maintain uniformity there is a microcomputer in each interface. This
microcomputer acts as an interpreter able to 1listen in one Jlanguage and
speak in another.

Section l: Introduction

|
I:.‘PLFCD T K | 100 K) 1DC

Wi e ¥ Ve
|

&ac &0

BACKPLANE
I/0 5LOTS

Figure 1-1. I/0 Hardware Diagram

The CPU is the central processing unit which executes machine language
instructions (either SYSTEM/BASIC or ROM/BINARY). It has unigque
designations of logic 1levels, timing, etc. Terminology used 1Iin the above
diagram and throughout this manual includes:

Input/Output Processor (IOP): An 8049 microcomputer which executes
preprogrammed microcode. This code allows the processor to converse
through interface dependent circuitry (IDC) according to the selected
options (50).

Translator (T): A two-byte wide channel with HP-83/85 logic levels,
timing, and control on one side and 8049 logic levels, timing, and
control on the other side.

Select Code (SC)}: Indicates to the translator where to appear in memory
address space.

1.3 Interpreting the Translator Bytes

As an 1I/0 programmer, the only access you have to the I/O processor is
through the translator. Each translator appears as two consecutive bytes
in memory. The I/0 processor also sees two bytes. These are full duplex
bytes. Unlike memory bytes, what you read from these two bytes is not what
you just wrote there. What you read is what the I/0 processor wrote into
them (with the exception of two control bits). What you write to these
bytes is what the I/0 processor receives next time it reads them (with the
same exception).

Section 1: Introduction

Because of this read and write Process, four names are associated with
these two bytes. The first byte (lower, even address) is called the
calculator control register (CCR) when you write to it and the processar
status register (PSR) when vyou read Efrom it. In general, "calculator"
refers to the computer CPU, and "Processor” refers to the I/0 Processor.
The second byte (higher, odd address) is called the output buffer (0OB) when
written to, and input buffer (IB) when read from.

EigJEEEE:nt L__FST I —] — | e [—_— I CED] CoM I INf_] Siphgfséunt

tput Buffear Full Input Buffer Full

Figure 1-2. Calculator Control Register

RST (reset): When set, the I/0 processor initiates the reset operation.

CED (calculator end data): When set, the CED bit indicates te the I/0
processor that the computer has declared the current data byte to be the
last of the current sequence.

COM (command): This bit tells the I/0 processor to interpret the byte it
finds in the output buffer. If the COM bit is set then the output
buffer contains a protocol command. If the COM bit is clear, then the
output buffer contains a byte of data.

INT (interrupt): Setting INT interrupts the I/0 processor.

1=4

Section 1: Introduction

Hoet Least
significent | per | vrie| FOPX | — | Pack| PED | pusy | -3BF | Sianafacent
Bit
HALT 1urv:§
Reguast

Figure 1-3. Processor Status Register

OBF (output buffer full): Writing a byte to the output buffer sets OBF.
It is cleared when the I/0 processor reads the output buffer.

TFLG (transfer flag): There are times when more than cone byte can be
transferred during a single interrupt (for example, with a multi-digit
BCD field). When TFLG is set it indicates that the I1/0 processor has or
wants additional bytes.

FDPX (full duplex): When set, FPDX indicates that this I/0 processcor can
do interrupt transfers in both directions concurrently.

PACK (processor acknowledge): This bit is set to confirm that the CPU
has interrupted the I/0 processor.

PED (processor end data): When set, PED indicates to the computer that
the current byte is te be the last of the ¢urrent input seguence.

BUSY [(not idle): When set, BUSY indicates. that the I/0 processer Iis
occupied.

IBF (input buffer full): IBF is set when the I/0 processor writes a byte
to the input buffer and is cleared when the CPU reads the input buffer.

The input and ocutput buffers are both eight-bit bytes. The meaning of the
bits is entirely situation dependent. For the CCR/PSR, six of the bits are
read by the I/0 processor as what was written there. What you read is what
the I/0 processor wrote there. The highest and lowest order bits are
contreol bits. They are read like this:

1. When the I/0 processor reads the RST bit, it receives output buffer
full.

2. When the I/0 processor reads the INT bit, it receives input buffer
full.

3. Where you read output buffer full, the I/0 processor writes HALT.

4. Where you read input buffer full, the I/0 processor writes BSRQ
(interrupt) .

15

Section l: Introduction

The translators are positioned in address

select code settings as indicated in table 1-

These bytes
with the
expected.
translator,

space
1.

according to the three

Table 1-1. Translator Addressing

Address Name Switches Select Code
1775208 CCR/PSR 7 3
177521 0OB/IB
177522 CCR/PSR g a1 4
177523 OB/1IB
177524 CCR/PSR g1a 5
177525 0B/IB
177526 CCR/PSR g-1 1 G
177527 0B/1IB
177538 CCR/PSR 1908 7
177531 OB/IB
177532 CCR/PSR 181 8
177533 OB/IB
177534 CCR/PSR 1 4@ 9
177535 OB/IB
177536 CCR/PSR 111 1@
177537 OB/IB

are accessed using

exception of multi-byte instructions
read from an address
If you write to such an address vour

If you
you will

data will be lost.

read all 1's.

which

instructions such as LD, ST, PU, and PO,

which do not work as
is not claimed by a

Section l: Introduction

The mapping of select codes into memory space is used by the I/0 ROM and
the standard I/0 interfaces. A similar set of addresses exists from 177508
to 177517. This additional set has some differences which are:

The 1/0 ROM does not handle these locations. If an interrupting
translator is 1in one of these locations, the I/0 ROM service routine
branches to the hook NEWIRQ.

e A factory mask option, rather than a select code switch, causes &

1.4

translator to occupy this region.
The locations 177568 and 177581 (which correspond to switch settings

of 0 @ @ or select code 3 in this region) are unavailable for a select
code because of the global uses of these addresses.

RAM Hooks Available to the I/0 Programmer

1.4.1 IRQ28 (182478)

In the sSystem reserved area of RAM memory, IRQ2# is a location that is
called when an IOP interrupts the CPU. The system code does not use this
hook except to initialize it with a RTN instruction at power—on.

Control passes to IRQ20 when the CPU is interrupted by an IOP. This is how
the transition looks at the hardware level:

1.

2.

The CPU, rather than executing the next instruction in its normal
sequence, pushes the address of that next instruction onto the R&
(return) stack. It then notifies the interrupting device (translator)
that it's ready.

The translator returns the number 2P (octal) as an interrupt vector
for the CPU. Other types of interrupting devices return other
vectors.

3. The CPU reads location 20 (in system ROM), gets the address of IRQ28

(which is stored there), and commences execution at IRQ26. Thus, when
considering the code for IRQZ2D and the interrupt service routine which
it calls, the Following conditions can be assumed from the fact that
the code at IRQ28 is executing: there iz a return address on the RE
stack: and the interrupting device is an IOP.

Sectien l: Introduction

In order for the interfaces to function, ROM or binary code must take the
hook at IRQ28. The IOPs need interrupt service to complete their DowWer—-on
reset routines (they must interrupt to report the self-test results). If
any one of the three ROMs which use interfaces (I/0, Plotter/Printer, and
Mass Storage) is present in the system, this Power-on reset protocol will
be handled by the ROMs before your binary program is loaded. If none of
these three is present, then you must take the IRD20 hook and complete the
reset yourself before you can use the interfaces.

You may do simple I/0 without taking IRQ28 if another ROM is= handling
power-on reset. Also, if the other ROM is the 1I/0 or Mass Storage ROM,
then the service routine hooked in IRQ20 by one or the other (I/0 if both
ROMs are present), will be able to handle your burst termination interrupt
and terminate the infinite loop. For all other situations you will want to
manage your own interrupt service procedures so you will take the hook at
IRQZ@.

If you have one of the above ROMs doing the power-on reset, vou will miss
the opportunity to identify the select codes of all translatoers pPresent.
In this case, load a copy of the byte at 188667 {octal). This is a system
location used by these ROMs as a "select code present” indicator. 1If the
bit is set, the select code is there.

Table 1-2. Select Code Byte Interpretation

MSB Bit Number 7 <] 5 4 3 p 1 @ LSB

Select Code | 18 g 8 7 3 5 4 3

If you need to write an interrupt service routine (ISR}, the rest of this
section provides an explanation of the code required. Following is the
code at the hook.

182479 IRQ28 RTN (before the hook is first taken)

Once it's been taken:

14247¢ IRQ28 SAD

12471 STBD R#,GINTDS
182474 JSB =ROMJSE
1@2477 IRQ284 DEF 1IS5R

192581 BYT ROM#
182502 STBD R#,GINTEN

182505 IRQPAD PAD
192506 IRQRTN RTN

Sectien l: Introduction

Taking the hook at IRQ28 is accomplished by storing the above instructions

at IRQ28@ (IRQ28+ is a convenience label to allow two multi-byte store
operations).

The individual instructions .are discussed next. Basically these
instructions are the first and the last of your interrupt service routine
(ISR). Recall that a proper ISR leaves no trace of its execution as far as
the interrupted code is concerned. On the HP-83/85 this means that the ISR

must preserve the CPU state, current ROM selection, the CPU registers, and
the stacks (R6 and R12).

SAD Saves the CPU state.

STED R#,GINTDS Assures that the ISR cannot be interrupted.

JSB =ROMJSE Calling through ROMJSB preserves the current ROM
selection.

DEF ISR Address of service routine.

BYT ROM# ROM number of service routine {(or @ for binary

program ISR).

STBD R#,GINTEN Re-enables global interrupts.

PAD Restores the CPU state.

RTH Pops the return address off the Rb6 stack and resumes
execution where it was interrupted (except at burst
1/0 termination where the return address is
intentionally altered by the ISR}).

The code at the hook handles preservation of the CPU state and ROM
selection. Preservation of the CPU registers and stack conditions is
handled by the ISR code. For the CPU registers this amounts to pushing the
contents of registers that might be used onto the R6 stack. For stack
conditions this amounts to popping them back off before your ISR returns.
There is, however, a possibility for stack overflow which must be addressed
by the ISR. To wunderstand the problem, we need a picture of the R6 stack
from the moment of interrupt to the time when your ISR checks for this
condition.

Start with the address pushed by the CPU when it is interrupted. Next,
there is a BSAD instruction at IRQ20 which pushes the CPU status in three
bytes. The Jjump instruction to ROMJSE saves the return address on the
stack. ROMJSB increments this address by three (to step past the DEF ISR
and BYT ROM# locations that it uses as the desired JSB target)} and then
pushes CPU registers R and Rl, the currently selected ROM number, and its
own return address as it jumps (JSB) to the ISR. The first thing the ISR
does is to push any CPU registers that it might use.

Section 1: Introduction

Second, the ISR checks for stack overflow. The R6 stack at the time of the
check looks like this:

2 bytes Interrupted return address.

3 bytes SAD,

2 bykes w-IRQ20 return address. 2
2 bytes R@ and Rl. \ ROMJSB puts these

1 byte ROM number. / 3 bytes on.

2 bytes ROMJSB return address.

n bytes Pushed by ISR.

Now go back and look at the last three instructions at the IRQ2@ hook:

STBD R#,GINTEN
PAD
RTN

These instructions are executed after the ISR has finished and returned to
ROMJSB. At the time of execution the R6 stack appears like this:

2 bytes Interrupted return address.
3 bytes SAD,
and after the execution of the PAD instruction:

2 bytes Interrupted return address.

and after execution of the RTN instruction:

- Empty, the state before the interrupt.
R

The problem arises because interrupts are enabled by the STBD R#, GINTEN,
but the stack is not empty until after the execution of RTN. If a fast
interface is interrupting, the next interrupt will occur while ISR is still
busy. As soon as STBD R#,GINTEN is executed, the interrupt will be
recognized and PAD will not be executed.

1-1@

Saction 1l: Introduction

The address will be pushed as the interrupted return address and the stack
will look like this at the stack overflow check:

2 bytes Real interrupted return address.

3 bytes Real SAD data.

2 bytes Extra interrupted return address.
trouble—

3 bytes Extra 5AD data.

2 bytes

2 bytes

1 byte {not changed)

2 bytes

n bytes
2t

If the interrupt should occur after the PAD instruction but before the RTN,
the stack appears like this:

2 bytes Real interrupted return address.
trouble-——-—
bytes Extra interrupted return address.
bytes
bytes
bytes
byte
bytes
n bytes
Rf—————m———

b B W

1f there are many fast interrupts, the extra bytes will build up until the
stack exceeds the allocated size. The ISR knows how many bytes it pushed
for CPU register preservation. It takes a copy of R6 and subtracts this
number plus 12 (decimal), from the 12 bytes known to be there from the
saving done by the CcPU, IRQ28, and ROMJSB. This gives it a pointer to the
"interrupted return address" on the R6 stack. To distinguish "real™ from
“axtra," the ISR compares this address to the two Kknown addresses (182585
and 162586) of the PAD and ATN instructions. The names IRQPAD and IRORTN
will be used to refer to the addresses of these two instructions. If the
address found is IRQRTN, the ISR knows that the previous ISR was one
instruction short of completion when +he current interrupt occurred and
that the real address is just in front of the current one.

To fix the problem, the ISR moves the top contents of the R6 stack (the
three bytes used by BSAD through "n" bytes used by the ISR) down two bytes
(eliminating the extra return Jddress to IRQRTN) and decrements RE by two.
Nothing is lost because the return to IRQRTN would simply have executed the
RTN instruction there which would have returned to the real address.

1-11

Section 1: Introduction

If the address found is IRQPAD, the ISR knows that the previous ISR did not
execute the PAD instruction, so there are five extra bytes. It moves the
stack top contents {starting at the return address for IRQ28 through the
bytes occupied by ISR) down five bytes and decrements R6é by five. Again,
nothing is lost because the extra SAD data was about to be replaced by the
real SAD data when the PAD instruction was interrupted.

You can see that every time the ISR is called for an interrupt, it must
clean up the stack if the previous ISR did not.

1.4.2 I0OSP (182487)

IOSP is also a location in the RAM system reserved area. The executive
loop Jjumps to IOSP when it gets to the end of a BASIC Program line and
finds that the service regquest bit is set (bit 4 in XCOM {R17})) and the I/0
interrupt bit is set (bit 1 in the RAM location SVCWRD (19@151)). This
hook 1is the means of implementing end-of-line branches, When an
end-of-line branch condition is noticed while executing a BASIC line, the
type of the condition is stored in RAM. The bits are set in XCOM and
SVCWRD and the code goes on executing the current BASIC pregram line. At
the end of the line, the executive loop branches through IOSP to the
end-of-line service routine (EOLSV) whose address was set up in the IOSP
hook. EOLSV notes the condition and executes the appropriate GOTO or
GOSUB.

Note: Use the rest of this section to create an ISR that performs an
end-of-line branch.

To take the hook at I0SP, store these instructions at IOSP (102407).

1824987 TIO0SP JSB =ROMJSB

182412 DEF EQLSV
182414 BYT ROM§ (@ for binary programs)
182415 RTHN

End-of-line branching reguires a GOTO or GOSUB as part of the statement
that sets it up. The parsing must be done correctly, so let's discuss a
sample statement, "ON SELFTEST <select code> GOTO/GOSUB 1line#." This
statement is to Set up an end-of-line branch which will be triggered by the
select code's IOP interrupting for a self-test report (after being reset).
The parse code will be executed when the keyword ON SELFTEST is scanned.

At first things are fairly normal; the instruction PUBD R43,+R6 is used to
save the keyword token. The instruction JSB =NUMVA+ is used to parse the
select code and then to pop the keyword token back and push it onto the R12
stack with a 378 ,ROM& or a 371,80.

1-12

Section 1l: Introduction

At this point you must handle the GOTO or GOSUB., NUMVA+ called SCAN before
it returned (if you don't have any arguments you must do an explicit call
to SCAN in place of NUMVA+) and SCAN left the primary attribute byte of the
next token 1in R47. If R47 contains octal 218, then the next token is a
GOTO or GOSUB. If R47 is not 218, you have a syntax error.

Having confirmed the 210 in R47, the parse code executes:

JSB =ROMJSB
DEF GOTOSU
BYT @

GTO ROMRTN

GOTOSU is the system routine to parse GOTO/GUSUEB and is at DAD 17435. If
the syntax is correct, this routine pushes three bytes onto the R12 stack
(and thus appends them to the program 1line being parsed) after the bytes
put there by the ON SELFTEST parse code.

The run time code for this keyword token has two tasks. The First is to
recover the select code value from R12 and an indicator in RaM. The ISR
will then know that a self-test interrupt £from this select code 1is the
cause for setting the service request bits (in XCOM and XVCWRD) for an
end=-of-line branch.

The second task is to set up (but not execute) the GOTO or GOSUB. Taking a
look at the compiled BASIC line we sse;

Token for Token for Token for
Fetch select code Execute ON SELFTEST GOTO/GOSUB line#

When the ON SELFTEST run time code is executed, the BASIC program counter
(R1@) is pointing to the GOTO/GOSUB token which is a random GOTO/GOSUB
token parsed by the system routine GOTOSU. The run time code must store
the contents of R1# somewhere in RAM For future use by the end-of-line
service routine. The run time code should also increment R18 by three to
skip execution of the GOTO/GOSUB when the ON SELFTEST statement is
executed.

After execution of the ON SELFTEST statement, the chosen select code
interrupts with a self-test report. The ISR, noting that ON SELFTEST is
active for that select code, sets an indicator te state that this
particular end-of-line branch condition has been met. It then sets the
XCOM and SVCWRD bits. Note that the complementary OFF SELFTEST statement
needs only to reset the "active" indicater set by the ON SELFTEST
stakement.

Section 1: Introduction

The first thing the end-of-line service routine does is to determine why
execution passed to it. Due to the structure of the system's executive
loop, the EOLSV routine must interact with the system code in a complex
way. You should copy these portions of code from the sample program. The
execution of the EOLSV is explained next.

If more than one "on condition" statement is active, the desired statement
is selected. When the token from this statement was executed, the GOTO or
GOSUB token following it was bypassed, but the R18 BASIC program counter
peinting to it was saved. The EOLSV routine now recovers that copy of R1@.
It stores the current R1O@ in a system RAM location (18884F) called ONFLAG
as a return address in case the branch is a GOSUB. It sets CSTAT (Rl6) to
7 to indicate that a GOTO or GOSUB is taking place as part of the execution
of a line. Then it places the recovered pointer into R18 and returns to
the executive loop which performs the actual branch. The EOLSV routine
keeps the request bits in XCOM and SVCWRD set so that IOSP will be called
again. When EOLSV is called again, it then decides whether or not it has
finished with end-of-line branching and if it has, the reguest bits will be
cleared.

1.4.3 NEWIRQ

This is a hook provided by the I/O ROM in its stolen RAM at IOBASE plus 630
octal. When the ISR from the I/0 ROM gets to the point of reading the
address of the interrupting translator's CCR/PSR and the address turns out
to be in the lower block of select codes not recognized by the I/0 ROM, the
ISR (from the I/0 ROM) jumps to MNEWIRQ. It has already saved everything
(including the CPU registers listed below), performed the stack overflow
check, and set up three register pairs: R@ and R24 point to the CCR/PSR and
R26 points to the OB/IB of the interrupting translator. When the NEWIRD
routine returns through the hook, the ISR restores everything and returns
through IRQ20. The hook should be taken with the following code:

JS5B =ROM.JSB
DEF NEWISR
BYT ROM #
RTN

The CPU registers saved by the ISR are: R2-3; R14-15; R28-27; R3p-37;
R4P-47; and R68-67.

1-14

Section
T

I/0 PROCESSOR COMMANDS AND PROTOCOL

2.1 Communications Protocol Between the CPU and the IOP

The way the CPU and the IOP communicate is referred to as IOP protocol.
This protocol defines commands and a2 handshaking system for interfacing at
the machine 1level. The location of the input and output buffers allows
transfer of individual bytes between the CPU and the 1/0 processor. Bytes
from the I/0 processor to the CPU are always interpreted as data bytes
{some of this data is I/0 processor status information but there is no
indicator bit to flag this; it is a matter of context). Bytes from the CPU
to the I/0 processor may be either data bytes or command bytes. The 1/0
processor reads the calculator control register before it reads the output
buffer and uses the COM bit to decide if the byte in the output buffer is a
data byte or a command byte. If it is a command byte (COM = 1), the I/0
processor interprets it according to the protocol command language.

Each command byte is an opcode and a field. The opcodes and their field
identifiers are shown in table 2-1.

Section 2: 1/0 Processor Commands and Protocol

Table 2-1. Command Bytes

Opcode (4 Bits) Field (4 Bits)
__Host gape Read Status

Significant
Bit g8 81 Input

g2 1@ Burst 1/0

2@ 11 Interrupt control

S A Interface control

g 1d1 (unused)

1 A I {unused)

Pl 1 X Read auxiliary

I 88 = Write Control

1 @18 Output

I il Send

13 @8 (unused)

LYl g1 {unused)

1180 Write auxiliary

1113 Extension

Of the 16 possible four-bit opcodes, ocne disappears because opcodes 1 0 @ @
and 1 @ @ 1 are really one opcode with a five-bit field. The four unused
numbers and ‘"extension" leave 10 opcodes of interest which will be
discussed individually. It is conceptually helpful to note that opcodes
with the most significant bit set are "wait for data" commands. The first
thing the I/0 processor has to do after receiving the command is wait for a
related data byte from the CPU. The low-numbered opcodes are "immediate
execute" commands as they start off by doing something other than wait for
the CPU to release a byte.

Section 2: I/0 Processor Commands and Protocol

2.2 Command Protocol Flowcharts

The fellowing
protocol.

flowcharts demonstrate the handshaking

1 Start }

Garbmge to 177404

Sat RST = 1

Y

Weit st lssst
50 microseconds

Y
Raad & ignora IB

Garbape to 177400

Wait 400
milliseconds

Figure 2-1. Reset One IOP

system used

in I0OP

Section 2: I/0 Processor Commands and Protocol

(CMDHS

OBF=BUSY=07

Write garbage byte
to 177401

Sol INT = 1

Gerbage to 177400;
Command 1o OB;

Fesd & Ignora 1B;

Sot COM = 1, INT = 0

Figure 2-2.

2-4

Command Handshake

Section 2:

I1/0 Processor Commands and Protocol

INTCHK

Seat INT = 1

l

Wait 7.8

microseconds

Figure 2-3.

Revive An Interrupted IOP

2-5

2-6

Figure

8A0 and GINTDS dona st hook

Y

Push CPU ragisters:
Check stack overflow:
Read 177800 for select code ID

Remsd IB end ignore it

g

Beat CCA = 0;
Raad IB for resson for
interrupting byte

Resson dependent service

Reatore CPU registers:
Barbage to 177500

GINTENM and PAD done at hook

Done

2-4. Interrupt Service Routine

Section 2:

I/0 Processor Commands and Protocol

Set CED = 0

Log EOT in

'__*__Thll Read for
these tostas:

Read 1B

Store datms

I
|
I
J
|
!
|
I
I
|

-~

Barbege to 08

This Read for

thasa tests:

Figure 2-5. Interrupt Output

Section 2: I1I/0 Processor Commands and Protocol

2-8

Ramd IB;
Store dats

Aesd PBA @ |f—————— =This Aead for

theas tests:

St CED = 4 =

Sat CED = O
Log EOT in

Garbage to 08

This Pasd rur-"f V
these tests: = —

Dana

Read PSR

Figure 2-6. Interrupt Input

Section 2: I/0 Processor Commands and Protocol

2.3 I/0 Processor Commands

2.3.1 Read Gtatus 2 @ @ @

The four-bit field is the number of the status register to be read first.
Successive reads get consecutive registers. This command implements the
STATUS statement.

2.3.2 Input @ 8 @ 1

The field is:

MEB Count Char. INTR IGP LSB
Term. Term. SIMPLE Term.
3 2 X %]

This opcode is used for both simple input and interrupt input. If bit 1 is
"@g," it's a simple input. If bit 1 is "1," it's an interrupt input. Bit @
set also indicates that the I/0 processor should terminate the input if the
iriterface dependent condition 1is met (EQI). Toe terminate an input
operation the I/0 processor sets the PED bit in the processor status
register. If the operation is an interrupt input, bits 3 and 2 may be set
to enable two other termination criteria. For bit 3 set the I/0 processor
will terminate the transfer if the number of bytes transferred is equal to
the number stored in control registers 25 and 26 (refer to opcode 1 @ d).
For bit 2 set the IOP will terminate the transfer upon receipt of a byte
equal to the one stored in control register 27 (refer to opcode 1 @ 8).
The CPU may terminate the input operation by setting CED = 1.

In fact, the CPU must set CED = 1 if PED = 1. Between the time that the
command is received and some termination takes place the 1I/0 processor
fetches bytes from the I/0 device and sends them te the CPU. For simple
input, it does so by putting them into the input buffer because the CPU is
waiting to take them out. Fer an interrupt input, the I/0 processor
interrupts the CPU with the reascn for interrupting being the availability
of one or more bytes for transfer in.

Section 2: 1/0 Processor Commands and Protocol

2.3:3 Burst I/O @ 8 1 @

The field is:

MSB IOP EOL INPUT L5B
4]
TERM ouT OUTPUT
3 2 1 8

This opcode is for burst I/0, both input and output. Bit @ indicates input
("1") or output ("8"). If it is an output, setting bit 1 will cause the
I/0 processor's programmed EOL Sequence to be sent put at the end of the
transfer (otherwise the interface EOI condition will be asserted with the
last byte). If the operation is an input, clearing bit 2 allows the I/0
pProcessor to terminate the burst if its EOI termination condition is met.
The CPU must always give the IOP a byte count {control registers 25 and 26)
before a burst operation. After giving the burst command, the CPU enters a
very tight infinite loop to transfer data as fast as it can. This burst is
always terminated by the I/0 processor which interrupts the CPU with the
reason for interrupting being burst termination. By tampering with the
interrupt service routine's return stack the CPU breaks out of the infinite
loop.

2.3.4 Interrupt Control @ # 1 1

The field is @. This opcode is a special "no op" command. When protocol
commands are passed by interrupting the IOP it sets PACK = 1 and enters an
"interrupted" state for the duration of the command execution. The 1/0
processor will remain in this state (with normal operations suspended)
until the CPU declares the command's operation to be complete by strobing
the I/0 processor's INT bit. For burst operation, the global interrupt
disable feature can't be used because the active I/0 processor must be able
to interrupt the CPU to terminate the burst. Before a burst operation, all
resident I/0 processors are sent this "no op" and are put into the
"interrupted" state by the command handshaking. The interrupt bit of the
I/0 processor to be used for burst is strobed and that I/0 Processor
"revives" to perform the burst. After the burst, all I/0 processors with
PACK = 1 are strobed, reviving them (by allowing completion of the "no op"
command) to continue with their normal operations.

2-18

Section 2: I/0 Processor Commands and Protocol

2.3.5 Interface Control @ 1 @ @
The field, from @ to 9, selects ane of the 1@ interface control operations.

These are immediate execution with no data invelved (except a parallel poll
response byte which is placed in the input buffer after that ocperation).

Table 2-2. Interface Control Fields

Field Command

ABORT I/0.
Set REN
Set REN @.

Set ATN 2.

Perform Parallel Poll.

Send "MY TALK ADDRESS."

Send "MY LISTEN ADDRESS."
Send EOL character sequence.
BREAK I/0.

RESUME I/0.

d I

I u

WMl Wk @

2.3.6 Head Auxiliary 81 1 1

This is a diagnostic not used by the I/0 ROM,

2.3.7 Write Contrel 1 8 @

The field 1is a five-bit register number. This opcode causes the IOP to
wait for data bytes which are to be written into consecutive control
registers beginning with the one indicated in the field. The CPU sets the
CED bit equal to 1 with the last byte sent. This opcode implements the
CONTROL statement. However, there are five control registers (R25 through
R29) that the I/0 ROM hides from BASIC programmers. These registers are:

R25 - (least significant byte) character count
R26 - (most significant byte) character count

These two bytes contain a 16-bit binary integer which the 1I/0 processor
uses to terminate a data transfer by character count.

Section 2: I/0 Processor Commands and Protocol

R27 - Input termination character

This byte 1is used by the I/0 processor as a termination match character
when bit 2 is set on an input interrupt command.

R28 - ASSERT byte

The ASSERT operation is performed by writing the byte to be asserted into
this control register.

R29 - Service Reguest Byte

This is the byte that is to be sent to the HP-IB bus if this processor is
serially polled.

2.3.8 Output 1 818

The field is:

M5B INTR L5EB
a8 @ a
SIMPLE
2 2 1 {7

This opcode commands a simple (bit 1 = @) or interrupt (bit 1 = 1) output
operation. The I/0 processor either waits for data bytes to output
(simple) or interrupts the CPU with the reason for interrupting being
readiness to transmit one or more bytes. In both cases the operation is
terminated by the CPU setting CED = 1 in the calculator control register
just before the last byte is put into the ocutput buffer.

2.3.9 Send Commands 1 8 1 1

The field is 8. The send commands tell the processor the next bytes
should be in command mode as opposed to data mode. This is an HP-IB opcode
and causes that interface to handshake the data bytes over the HP-IB bus
with ATN = 1 (true).

2.3.18 Write Auxiliary 111 @

Like read auxiliary, this opcode is a diagnostic not used by the I/0 ROM.

2=12

Section 2: I/0 Processor Commands and Protocol

2.4 What Happens When the I/0 Processor Interrupts the CPU?

When an I/0 processor interrupts the CPU, the first thing the CPU service
routine does after identifying the processor is to read the input buffer to
let the processor know that the servics regquest is now being handled. The
processor then places a byte into the input buffer to tell the CPU why it
was interrupted. The recognized values of this byte are:

Table 2-3. IOP Interrrupt Byte

Byte Interrupt Reason
% I - I O O T R Interrupt output.
7 00 O R A | Burst termination.
P EEBPOL1A ON INTR condition met.
gegpBRlil Self-test passed.
gepBB1lEE Interrupt input.
TR R R G B Finished EOL sequence.
121138113 Self-test failed.
Tk § ddial & Invalid I/0 operation.
PX XX XXII Interface type dependent error.

Interrupt Output: The IOP is prepared to process one or more output data
bytes (during an output transfer by interrupt) and is interrupting to get
some data from the CPU.

Burst Termination: The IOP has determined that the current burst operation
is finished and the CPU should abandon its infinite loop.

ON INTR Condition Met: Some interrupt condition masked in control register
1l (interrupt mask) has occurred.

Self-Test Passed: The IOP has completed its reset procedure and passed the
self-test.

Interrupt Input: Like interrupt output with the IOP indicating it has bytes
for the CPU.

Finished EOL Sequence: The IOP has completed sending the EOL character
seguence after an interrupt output.

Self-Test Failed: The IOP has completed its reset procedure and has failed
the self-test.

2-13

Section 2: I/0 Processor Commands and Protocol

Invalid I/0 Operation: The IOP cannot execute the protocol commands it has
received (for example, a serial interface was sent a parallel poll
command) .

Interface-Type Dependent Error: The IOP is reporting an interface dependent
error. Thewe erress are -dwcumented in the I/0 ROMmanual. Adding 112
(decimal) to bits 6 through 2 in the interrupt byte will give you the error
number.
Following is an interpretation of the "“reason byte."

Reason byte: X X X X X X 1 1 - "Reports"
These are error reports or the "self-test passed" report. The I/0 ROM
displays a message for the errors. You need not do anything as far as the
I0P is concerned.

Reason byte: 0 8 8 8 @ 1 1 @ - "Finished EOL sequence”

9dPB0@B1G - "ONINTR trigger™

These two are also reports in the sense that the IOP is telling the CPU it
is finished sending the preprogrammed end-of-line character sequence in the
first case and one of the register 1 interrupt mask conditions has been met
in the second case. The I/0 ROM records an EOL branch indicator far the
appropriate ON EOT or ON INTR. You need not do anything.

The above reasons for interrupting don't really obligate you, as the I/0
programmer, to do anything besides acknowledge the interrupt in your
service routine. Burst termination, interrupt input, and interrupt output
do require you to take appropriate action.

Reason byte: @ 8 8 @ @ 8 @ 1 - "Burst termination"
You must break the CPU out of its infinite loop. Refer to Burst I/0%

Reason byte: 0 0 8 82 @ @ @ @ — "Interrupt cutput”

P20 2G1PE A - "Interrupt input”

See figures 2-5 and 2-6 at the beginning of this section for details of
these reason bytes.

2-14

Section
TIX

PERFORMING I/O OPERATIONS

. | Introduction

This section defines and illustrates the operation high-level I/0. It is
divided into three parts: flowcharts which illustrate the operation of
high-level and utility routines, utilities and sample code, and the
description of the steps involved in performing an I/0 operation.

3.2 1/0 Operation Flowcharts

The flowcharts shown assume that the reset and interrupt facilities are set
up.

Section 3: Performing I/0 Operations

3=2

CMOHS
DODOXXXX

i

Fead atmtua
ragister

from IB

yam

Garbage to 08

Figure 3-1. Read

Status

Section 3: Performing I/0 Operations

Garbage to D8
A

Resd IB and
store data

+——Thin Rasd for

thasa tests:

Figure 3-2. Simple Input

Section 3: Performing I/0 Operations

Sst CCR = 0

JBE BOUT JS58 BINM

REINT

Done

Figure 3-3. Burst I/0

Section 3: Performing I1I/0 Operations

_ fr——— —— Halted nere

BIN

Barbage to I:HI

Y

Remd IB

”-'l-—--———- Haltad hare

Push byte

B

Figure 3-4. Burst Loops

Section 3: Performing I/0 Operations

| DISINT '

Writea m 2 to location 477402 to
dissble the keybosrd intarrupt.

Y

Write the following seguence of
bytes to the location 177412 to
disable tha timar interrupts:
1, 1031, 201, 301 (octml).

Uss CHMDHS to send the Interrupt
control comsand to all resident
10Ps

Figure 3-5.

Y

Disable All Interrupts

Section 3: Performing I/0 Operations

3

Use INTCHK on aasch resident IDP.
On the lust one, walt until
OBF = BUBY = O,

Write a 4 to location 177402
to re—-sneble the keybomrd.

|

2

Write the following segquence
of bytes to locmtion 177442 to
re-oneble the timars:

102. 202, 302 (octal)

Figure 3-6.

Re—enable All Interrupts

Section 3: Performing I/0 Operations

'I Start l

¥

CHDHS
100X} KX

g

DBF7?

1]

Get datm byte

Bat CED = 1i:
Bytes to 0B

Byte to DB

Figure 3-7. Write Control

3-8

Section 3:

Performing I/0 Operations

Sst CCR = 0

| |

EM

Figure 3-8. Initiate Interrupt Input

3-8

Section 3: Performing I/0 Operations

1 Start I

¥

CHMOHS
10100040

ps
i
oBF?
0

Sat CCA = 0

Figure 3-9. Initiate Interrupt Output

3-18

Section 3: Performing I/0 Operations

=D

CHMOHS
1002140014

—

LD
!
DBF7?
0

Set CCR = O;
LS8 of count
to 08

1r_'
i
DEF7
o

M88 of count
to DB i

Termination char.
to 0B

Figure 3-18. Send Byte Count

Lad
"

Section Performing I/0 Operatians

1 Start i

CHOHS
10100000

Soat CCR = D

L i

Bet the next
byte to send

Set CED = {;
Byte to 08

Byta to 08

Figure 3-11. Simple Output

3=12

Sectign 3: Performing I/0 Operations

3.3 1/0 Operations: Utilities and Sample Code

3.3.1 Register Conventions

In the examples of binary code throughout this manwal, it is assumed that
all data transfers take plage batween the TOP and the CPU registers,
Therefore, the choice of registers, data scurces, and sinks is up to you.

The sample code is written for a binary program. If you are going to write
ROM=-based code, refer to the Assembler ROM manual for a discussion of the
changes you should make to convert from the binary pregram format. To make
things easier to understand, a few register conventions are adopted here:

R22,23 Base sddress (BINTAEB or stolen RAM
pointer, if you are writing ROM code).

[/0 Addresses:

k24,25 Pointer to the I0P calculator control
register/ processor status register port.

R25,27 Fointer to the ISP output buffer/input buffer
port.

For String Enter or Output:

R38, 31 String length.
R32,33 String peinter.
Other:
R3S Command byte for SEND CMD operations (send
s bus protocel command, that is, unlisten).
R36 Command byte for I/0 protocol commands.
R37 Scratch for flag tests, etec.

3.3.2 Interrupting Versus Noninterrupting I0P Commands

In general, the I0Ps should be dealt with in discrete, mutually exclusiye
operations. One exception to this is when doing interrupt 1/0 with a full
duplex interface or with two or more different interfaces. There are some
protocol commands that must be able to operate at once, even if the
interface is busy at the time.

3-13

Section 3: Performing 1/0 Operations

They are passed to the IDP by a handshake method which interrupts the IOP
from whatever it is ecurrently doing. Because they are either
noninterfering (read, status) or benevolently interfering (abort, resume),

these interrupting commands are given the privilege of bypassing the normal
wait when the IOP is busy.

The best way to handle the different command passing procedures is to
simply have two command handshaking routines (one for the interrupting
commands and another for direct commands), and two operation termination
routines (refer to the DIRCMD, INTCMD, INTCHK, and O=B=8 utilities). If
you are doing interrupt I/0 with a full duplex interface, the interrupting
commands will allow you to do those operations that will work. In all
other cases, the difference between the two types of commands is one of
handshaking method, because the CPU is presumably only doing one thing at a
time.

We will discuss the I/0 operations as individual events with a beginning, a
middle, and an end. The handshaking difference shows up in the beginning
of an operation as the method of passing the command, and also at the end
as the method used to terminate the operation. (Wait until the IOP has
Finished the operation in the case of direct commands and make sure that
the I0P is "uninterrupted" and returned to its presumably interrupted task
in the case of the interrupt-type commands). In the following discussions,
it is assumed that all operations are discrete (interrupt I/0 is discussed
Separately) and the only task interrupted by an interrupt-type command is
the task of idling while waiting for a command.

3.4 Definition of an I/0 Operation

An operation is one complete interaction with an IOP. For instance, an
input operation includes the configuration and addressing (if needed) as
well as the transfer of data. A protocol command is an order to an IOP to
execute some part of an operation. A typical data transfer operation will
involve a number of protocol commands.

An interrupt-type protocol command involves three stages of execution:
1. The IOP is interrupted by the CPU.
2. The command is given and exscuted by the IOP (using the CPU

if necessary).
3. The IOP then returns to its previous task.

i-14

Section 3: Performing I/0 Operations

The utility routine INTCMD will interrupt the IOP and pass the protocol
command to it. The utility routine INTCHK will uninterrupt the IOP. A
direct command is passed to the I10P by the utility routine DIRCMD. This
routine will wait until the IOP is not busy and then handshake the command.
The IOP does not need to be uninterrupted after a direct command but it is
common to walt until the IOP returns to idle after the command by calling
the utility routine 0-B-g.

For purposes of discussion the operations will be grouped into these
categories:

Status and Control.

Simple Input/Output.

Primary Addressing and HP-IB Interface Message.
Miscellaneous Utilities.

Burst Input/Output.

Interrupt Operations.

For a discussion of the protocol commands as an instruction set and
explanation of bits, ports, and addresses refer to section 2.

3.4.1 Command Handshaking Utility Subroutines

There are a few common waits and handshakes involved in many I1/0 operations
and they are presented here as subroutines which you can include in the
binary code you write. These are examples that make the code that follows
easier to understand.

These utilities follow the register conventions outlined at the beginning
of this section.

Wait until the input buffer is full:

IBF=1 LDBD R37,R24 IREAD THE PSR
JEV IBF=1 !JIF IBF - @
RTN

Wait until the output buffer is empty:

OBF=0 LDED R37,R24 IREAD THE PSR
JWNG OBF=§ IJEF OBF = 1
RTH

3=15

Section 3: Performing I/0 Operations

Send the command byte in R36 to the IOP by direct method:

DIRCMD JSB X22,6=B=0 IWAIT FOR OBF=BUSY=p
LDB R37,=2 ISET CMD BIT TO 1
STBD R37,R24 1 IN CCR
STBD R36,R26 ISEND THE COMMAND BYTE TO OB
JSB X22,0BF=8 IWAIT TILL THE IOP HAS IT
CLB R37 ICLEAR THE CMD BIT
STBD R37, R24 1 IN CCR
RTN

Wait until the output buffer is empty and the IOP is not busy. This will
terminate direct command operations.

0=B=0 LDBD R37,R24 !READ THE BSR
ANM R37,=282 !MASK OFF OBF AND BUSY
JNZ O=B=2 !JIF THEY'RE NOT BOTH @
RTHN

Send the command in R36 to the I0P by interrupting it:

INTCMD STBD R37,=GINTDS IDISABLE ALL INTERRUPTS
LDE R37,=1 ISET THE INT BIT TO 1
STED R37,R24 1. IN THE CCR

INTCM1 LDBD R37,R24 IWATIT UNTIL THE IOP SEES IT
ANM R2I7,=10 ! AND ACKNOWLEDGES
JZR INTCM1 ! (JIF PACE = @)
STED R37,=GINTEN !OTHER INTERRUPTS QK NOW
STBD R36,R26 |STUFF THE COMMAND INTO OB
LDED R37,R26 !BE SURE THE IB IS EMPTY
LDBE R37,=2 !SET CMD BIT & CLEAR INT BIT
STED R37,R24 ! IN THE CCR TO START IOF
JSB X22,0BF=0 IWAIT TILL IOP GETS COMMAND
CLB R37 ICLEAR THE CMD BIT
STBD R37,R24 ! IN THE CCR
RTN

3-16

Section 3: Performing I/0 Operations

Check to see if the IOP is busy. If it is, the interrupt bit (INT in the
CCR) must be strobed. The test for PACK=1 allows this routine to be called
for an IOP which wasn't interrupted in the first place. Use this code to
terminate interrupt-type command operations:

INTCHE LDBD R37,R24 1READ THE PSR
ANM R37,=10 IMASE OFF THE PACK BIT
JNZ INTCHIL 1IF PACK = 1
INTRTN RTN IELSE, IT'S DONME ALREADY
INTCH1 LDB R37,=1 ISTROBE THE INT EIT
STBED R37,R24 1 IN THE CCR
JSB %22, INTRTN ! (waste some time)
CLB. R37 | RESET THE BIT TO 9
STBD R37,R24
INTCH2 LDBD R37,R24 INOW WAIT UNTIL PACE = %]
ANM R37,=18
JNZ INTCHZ
RTHN

3-17

Section 3: Performing I/0 Operations

Send the byte in register R35 as a bus command {that is, the equivalent to

SEND <s.c.>; CMD <R35>):

SNDCMD LDB R36,=260 PRUTOCOL COMMAND FOR SEND

JSB X22,DIRCMD ! GOES TO THE 1I0P
LDBE R37,=4 IONLY ONE BYTE, SO SET CED
STBD R37,R24 ! IN THE' CCR

STBD R35,R26
JSB X22,0=B=0
RTN

ITHE BYTE (DIRCMD DID OBF=0)
| WAIT UNTIL THE IOP IS DONE

3.4.2 Status and Control Operations

These operations correspond to the STATUS and CONTROL keywords in the I/0D
ROM and are implemented in assembler code through the I/0 protocol commands
"Read Status" (opcode = 80880) and "Write Control" (opcode = 1088 or 1@gl).
There are some control registers available to the assembly language I1/0
programmer which are not directly accessible through the 1/0 ROM. They
will be discussed separately at the end of this section.

interrupt—type command because it might be

busy with an interrupt input or output
are considered direct commands because they
(They change the

The status operation 1is an
needed while an interface is
transfer. Control operations
should not be executed while a transfer is in progress.
configuration of the interface.)

Table 3-1. Execution Times (milliseconds)

3-18

HP-IE Serial BCD GE=-I0
Assembler | 8.9/8.15 @.85/8.3 g.7/8.18 #.865/8.15
BASIC 9/3 11/3 9553 9/3

These times are given as:

<time to do one byte's worth>

<time for each extra byte>

Section 3: Performing I/0 Operations

3.4.3

These examples assume
under Register Conventions.
the number of bytes
contreol eperatien. In

that the CPU registers
The string length in register
te be read in the status operation
addition, the starting status

Status and Control Utility Subroutines

are already set up as shown
pair R30,31 is

and written in the
and control register

number is in CPU register R34 and is assumed to be wvalid.

STATUS LDE R36,=0
ORE H36,R34
JSB X22, INTCMD
STAT10 JSB X22,IBF=1
LDBD R37,R26
PUBD R37,+R32

DCM R3@
JZR STATZH
STBD R$,R26
JMP STATIQ
STAT20 LEB R37,=4

STBD R37,R24
JSB X22,8=B=0
JSB X22, INTCHK
RTN

CONTRL LDB R36,=200
ORB R36,R34
JSB ¥22,DIRCMD

CONT10 JSB X22,0BF=g
POBD R36,+R32
DCM R38
JZR CONT24
STBD R36,R26
JMP CONT1@
CONT28 LDB R37,=4

STBD R37,R24
STBD R36,R26
JEB XZZ,0=B=8
RTN

The control and status operations differ
implemented by a

registers which are

operations correspond to those
statements: STATUS and CONTROL.

!5tatus opcode = @
I5tarting register is field
ITell the IOP to do status
IWait till IOP gets a byte
!Read the status byte
I5tore it

IWas that the last one?

! (JIF yes — last one)

! else ask for another one
! and go get it

IWe're done so set CED

! in the CCR

IWait for IOP to finish up
{Uninterrupt the IOP

IControl (opcode = 188)

t field = starting reg. #
1Tell IOP to do control write
IWait till IOP is ready for

! this next byte.

tIs this the last one?

! [JIF yes — last one}

! otherwise just send the byte
I and go for the next one

'On last one set CED

! in the CCR

! and then send the byte.
IWait till the IOP is done

in wvarious interfaces only in the
particular interface. Legal

that are legal to use with the I/0 ROM

3-19

Section 3: Performing I/0 Operations

3.4.4 Special Control Operations Not Available With BASIC

There are five control registers in each interface which are not visible to
the BASIC programmer. These are control registers 25 through 29. The five
registers implement the following four functions:

l. Transfer Count. Before each burst transfer or interrupt input
transfer, the IOP must receive a byte count. This is the count that
terminates a burst transfer and, among other possible conditions, an
interrupt input transfer. This count is specified by writing it to
control registers 25 (least significant byte) and 26 (most
significant byte).

2. Delimiter Character. Interrupt input transfers can also be
terminated by the receipt of a particular byte value. This value is
specified by writing it to control register 27. This corresponds to
the keyword "DELIM" in the I/0 ROM.

3. Assert Byte. The ASSERT operation is performed by writing the byte
to be asserted to control register 28. The difference between this
operation and a write to control register 2 (they both put the byte
inte control register 2) 1is that ASSERT 1is implemented as an
interrupt-type command. Thus, the operation can take place even
while the interface is busy.

4. Service Request. The REQUEST operation is performed by writing the
response byte to control register 29. This sets up a service regquest
on the HP-IB interface, sends a break over the serial interface and
is an error for the BCD and GPIOD interfaces.

These special control write operations are distinguished from the normal
control write operations by the command handshaking method used. For the
Assert and Request operations the handshaking is always Iinterrupt-type.
For the writing of byte count and input termination match byte, the
handshaking is interrupt-type if the interface is full duplex (FDPX bit in
PSR is egual to l). Otherwise the handshaking 1is direct-type. These
control registers can be accessed using the sample CONTROL code above by
making the following two substitutions when interrupt-type handshake is
needed: replace DIRCMD with INTCMD and replace O=B=0 with INTCHK. Because
the byte counts are known, the simplified wversions are presented below.
The assert, response, or termination byte is assumed to be in R34. The
count is assumed to be in register pair R34,35.

3-28

Section 3: Performing I/0 Operations

Send byte count to

TCOUNT LDB R36,=231
JSB %22, INTCMD
STBD R34,R26
JSB X22,0BF=0
LDE R37,=4
STBD R37,R24
STBD R35,R26
JSB %22, INTCHK
RTN

Send count to a nonfull duplex

DCOUNT LDB R36,=231
JSB X22,DIRCMD
STBD R34,R26
JSB X22,0BF=0
LDB R37,=4
STED R37,R24
STBD R35,R26
JSB X22,0=B=0
RTN

Send delimiter character to a £

ITERM LDBE R36,=233
JSB X22,INTCMD
LDB R37,=4

STBD R37,R24
STBD R34,R20
JSB X22,INTCHK
RTN

a full duplex interface:

1Protocol = write contrel 25
1 (full duplex)

1Send least significant byte
iWait till IOP gets first one
iThis is last, so set CED

! in the CCR

1Send most significant byte
iWait till IOP is done

interface:

1Protocol = write control 25
1 (NOT full duplex)

| first byte (DIRCMD did OBF)
tWait for IOP to get first
1Second is last 5o set CED

1 in the CCR

1Second (most significant)
IWait till IOP is done

ull duplex interface:

1Protocol = wWrite control 27
1 (full duplex)

\First is last, so0 set CED

1 in the CCR

1Send the byte

1Uninterrupt the IOP

Send delimiter character to a norifull duplex interface:

LDB
JSB
LDED
5TBD
STBD
J5B
RTHN

DTERM R36,=233
R37,=4
R37,R4
R34,R26
%22 ,0=B=0

Note that the count and

X22, DIRCMD

termination character

1Protocol = write control 27
{ (NOT full duplex)

1First is last, so set CED

1 in the CCR

1Send the byte

IWait till IOP is done

can be specified in one

operation by sending the three bytes in order.

3-21

Section 3: Performing I/0 Operations

Assert the byte in R34 (any kind of interface):

ASSERT LDB R36,=234
JSB %22, INTCMD
= LDB E-B? ¥ =4 o <

STBD R37,R24
STBD R34,R26
JSB X22,INTCHK
RTN

Reguest service or break:

ROUEST LDB R36,=235
JSB X22,INTCMD
LDE R37,=4

STBD R37,R24
STBD R34,R26
JSB X22, INTCHK
RTN

3.4.5 Simple Input/Output
These operations
transferred data
flow of its binary program.

the I/0 ROM keywords ENTER and OUTPUT.

perform programmed I/0
is handled directly by the
They correspond

iProtocol = write control 28
IThis is ALWAYS interrupting
10nly one byte so set @ED

! in the CCR

1Send the assert byte

{Wait till IOP is done

{Protocol = write command 29
IThis is ALWAYS interrupting
10nly one byte so set CED

| in the CCR

1Send the response byte
iWait till IOP is done

where the handshaking of
CPU in the normal execution
to but need not be limited to

Multiple concurrent 1/0 transfers

can be performed with these simple operations so long as no interface needs

to operate in a full duplex mode.
an interrupt service routine to reset
I1/0 operations on four

four concurrent
interfaces

for input buffer full

A binary program which manages enough of
the interfaces at power-oh could run

interfaces. By polling the input
and the output interfaces for output

buffer empty, the CPU can control the data transfers entirely.

The operations described here assume that the interface
addressed as

It is assumed that the number of bytes to be transferred
is indicated by the string length in R38,31
contents of R32,33.
course, up to the

configured and
discussed later).

pointed to by the
goes is, of

involved has been

needed (send bus command pperations are
and the data source or sink is
where data comes from and where it

I1/0 programmer. The transfers to and from

311 interfaces always involve one or more bytes.

3-22

Section 3: Performing 1I/0 Operations

The BASIC language 1/0 programmer has a large variety of data types and
structures that can be specified in ENTER and OUTPUT statements. The
keyword code in the I/0 ROM translates these data types and structures into
a string of bytes before it outputs them to an interface (using identical
translation procedure regardless of interface type). They are translated
into a string of bytes after they are input for an ENTER operation (again
the interface type makes no difference). when coding I/0 operations
directly in assembly language you must manage yolr owWn data formats. The
content of the byte or bytes transferred depends upon your application and
the type of interface.

In general, the HP-IB interface isn't affected by the content of a given
data byte; neither is the serial interface (except for some control codes).
The BCD interface requires a restricted set of ASCII symbols in a
particular format depending on the configuration of the ports. The GPIO
expects only to handle even numbers if you are using one of the 16=bit
ports.

Output

For outputs, an interface must be configured (refer to Control), addressed
(refer to Send), given the output protocol command, and given a byte or a
series of bytes to output with the CED (calculater end data) bit in the CCR
set to 1 just before transfer of the last byte. The interface will send
its end-of-line character seguence (as specified in control registers 16
through 23) and then go into its nonbusy state (recall that the BCD
interface does not have an end-of-line character seguence) .

The configuration and addressing need not be repeated before each output
operation if you know that it has already been done. The eoutput protocol
command must be used before a data byte 1s output to an interface if the
CED bit was set for the previous data byte output to the same interface.
You may omit the setting of the CED bit and the sending of the next output
protocol command if you keep track of whether or not the interface is busy
(the I/0 ROM does this to allow the OUTPUT USING # option).

Input

Inputs are similar to outputs in configuration, addressing, and command
sequence. There are sSome added complications involved in the termination
of the transfer. The CPU may terminate an input at any time by setting the
CED bit in the CCR, similar to the OUTPUT termination.

The IOP may also decide to terminate an input operation by setting the PED
bit (processor end data) in the PSE. Whether or not this occurs depends
upon the particular interface and the option bits included in the input
protocol command . The three option bits are: bit 3 {count), bit 2
(character), and bit @ (EOI). Bits 7 through 4 are the command opcode
(gp@l). Bit 1 specifies whether the input is a simple input (bit 1 = @) or
an interrupt input (bit 1 = 1). We will examine these options £for each
interface.

3-23

Section 3: Performing I/0 Operations

HP-IB Input

The HP-IB interface allows you to use any of the three options. If you
specify termination by count, you must provide the count {(by writing to
control registers 25 and 26) before beginning the input operation. The
same holds true for the character termination option (you must provide the
termination match character by writing it into control register 27). The
EOI condition on the HP-IB interface is taken to be the receipt of a data
byte (device dependent message) with the END message (EOI) true.

Serial Input

The serial interface also allows you to use any of the three options, but
this interface will use the EOI condition whether or not you specify it!
For this interface, the EOI condition is an incoming character that matches
one of the termination characters specified in the control registers 12,
13, 14, or 15 along with the enabling bits in control register 11. Hote
that these four termination match characters are in addition to the one
that you may or may not have specified as the termination character in
special control register 27.

BCD Input

The BCD interface does not use or allow any of these input termination
operations. The BCD interface will only accept the protocol command 21
{octal) as the simple input command.

GPIO Input

The GPIO interface allows the count and character termination options and
completely ignores the EOI bit. If you are operating in 16-bit mode, the
count termination option may be used but the character termination eption
may not be used.

Besides these specified input termination conditions, the BCD interface
will set the PED bit when it has exhausted the bytes needed to transfer the
data defined by its current primary address and port configuration. The
other interfaces will just keep on sending bytes until the CED bit is set,
or one of the enabled and allowed conditions is met.

It is the responsibility of the CPU to recognize the assertion of the PED

bit, set CED in response, and send a new input protocol command before
asking for additional input bytes.

3-24

Section 3: Performing I/0 Operations

Execution Speeds for Simple Enter and Output

Execution speeds for simple enter and output operations depend upon
external events as well as I/0 protocol execution so they will be discussed
rather than simply listed. The BASIC execution times for equivalent
operations depend heavily on formatting options and will be mentioned but
not discussed in detail.

HP-IB Interface

The HP-IB interface requires 0.3 milliseconds to process an input protocol
command and B.25 milliseconds to output each data byte (device dependent
message). It will process an output protocol command in 8.4 milliseconds
and send each data byte in #.16 milliseconds. This means that about 4,008
bytes per second can be input and about 6,800 bytes per second can be
output. These times assume that any devices on the HP-IB interface bus are
fast enough to keep up with the interface at these speeds.

Serial Interface

The serial interface regquires about 0.5 milliseconds to process either an
input or output protocol command. Due to the timing methodology used and
the interface, the execution time for the protocol command is lost in the
baud rate, FIFO (first in, £first out) operations, and external device
response. Because 96008 baud is the maximum data transfer rate available on
the serial interface, this will limit the speeds at which bytes can be
transferred to about 968 bytes per second (assuming 10 bits per character).
The CPU has no trouble keeping up with this speed. If you are operating
under conditions that guarantee you will be inputting bytes that are
already in the FIFO buffer then you can expect to get them out in
approximately @.3 milliseconds each.

BCD Interface

The BCD interface requires ©.3 milliseconds to process an input protocol
command and @.25 milliseconds for each byte actually input. The time for
the output protocol command is 8.6 milliseconds and #.25 milliseconds per
data byte. Remember that each data byte corresponds to one port digit (in
the BCD interface) and that the number of bytes transferred depends upon
signs, exponents, and punctuation, as well as the number of port digits
involved. The BCD interface will always include a line feed character at
the end of each reading where it sets the PED bit.

If we assume that the externally connected device is as fast as the
interface, then we can get some "transfers per second" figures. If we just
use one digit, we can output one data byte but must input twe data bytes
(digit and line feed; recall that there is a sign character if you're using
the mantissa instead of the function digit as assumed here) so we can
expect to get about 1,188 transfers out per second and about 1,200
transfers in per second.

3-25

Section 3: Performing I/0 Operations

If we look at a large format number with eight mantissa digits and an
exponent (which is always three digits as far as the BCD interface is
concerned) then we need to output 14 digits and input 15 digits. The
result will be about 258 tranfers per second in either direction.

GPID Interface

The protocol command handshake and the transfer of a l6-bit number (two
data bytes) takes one millisecond in either direction using the GPIO
interface. For eight-bit format transfers, the command handshaking takes
@.4 milliseconds and each data byte transferred also takes #.4 milliseconds
in either direction. This translates into 188¢ transfers per second for
16-bit data and 2508 transfers per second for eight-bit data.

BASIC

The comparable times in BASIC depend upon the overhead required for the
IMAGE specifiers. In general, there will be approximately 20 milliseconds
for the interpreter and statement set-up. There will also be at least 58
microseconds per character transferred depending upon what kind of
transformations are being done to the data. While you can escape this
overhead by doing your I/0 operations directly £rom assembler code, Yyou
must do something in the way of sourcing and/or sinking data. This will
take some time in addition to the time for the CPU-IOP transfer.

3-26

Section 3: Performing I1/0 Operations

3.4.6 Simple Input and Simple Output Utility Subroutines

The examples below assume the correct number of bytes to be transferred is

in register pair R38,31 and

the source/sink pointer is in register pair

R32,33. For input, it is assumed that a valid bit mask for the termination
options is available in register R34. It is also assumed that the
interface involved has already been addressed as needed and pointers to its
CCR/PSR and OB/IB are in register pairs R24,25 and R26,27.

INPUT LDB R36,=20
ORE R36,R34
JSB X22,DIRCMD

INloop JSB X22,IBF=1
LDBD R36,R26
PUBD R36,+R32

anM R37,=4
JNZ INPend
DCM R3D
JZR INPend
STED R#,R26
JMP INlop
INPend LDBE R37,=4

STBD R37,R24
JSB ¥2Z,0=E=0

RTH
QUTPUT LDB R36,=240
JSB X22,DIRCMD
DUTlop POBD R36,+R32
JSB K22 ,0BF=0
oCM R348
JZR 0OUTend

STBD R36,R26
JME OUTloop

OUTend LDB R37,=4
STBD R37,R24
STBD R36,R26
JSB X22,0=B=0
RTN

Note that any end-of-line

|Protocel = simple input

| or in the options

1Tell IOP to do input

IWait till there's a byte

! get it from IOP

t and sink it

Was PED set?

t JIF yes — IOP says "Stop!"
115 sink satisfied?

1 JIF yes — CPU says "Stop"

! Reguest another

| byte and go to get it

1Set CED to declare/confirm
1 that the operatieon is over
IWait till IOP is all dene

1Protocol = simple output
ITall IOP to do cutput
1Get the next data byte
iWait till IOP is ready
1Is this the last byte?

! JIF yes — time to stop
! else byte to IOP and

! go for the next one
\Set CED

|Last data byte to I0P
IWait till I0P is all done

character sequence which is set up for the

interface will be sent at the end of the output operation by the interface
as its response to the setting of the CED bit.

Also note that outputting a series of data bytes is identical in procedure
to writing a series of control registers except for the wvalue of the

protocol command passed.

3-27

Section 3: Performing I/0 Operations

3.4.7 Primary Addressing and HP-IB Interface Messages

Primary addressing is an operation that is implied by the use of three or
four digits in the device selector in the I/0 ROM. The second two of these
digits are the Primary address portion of the selector (the first one or
two digits are the interface selesct code). For the serial interface,
primary addressing has no meaning and causes an error. For the HP-IB
interface, the primary address is the HP-IB bus address of the intended
data source or destination device. For the BCD and GPIO interfaces, the
Primary address 1is the means of choosing among the various partial field
options for the BCD and port formats for the GPIO.

The areas of configuration and addressing tend to overlap a bit; a couple
of the following operations are accomplished by writing to control
registers. What is being established is: the direction of -the data flow,
and its source or destinatioen as far as the interface is concerned.
Because the GPIO and BCD interfaces handle Primary addressing in a simple
way, we'll look at them first, and then go through the HP-IB interface in
some detail.

BCD and GPIO Addressing

Setting the proper direction of data flow for the GPIO and BCD interfaces
is a matter of enabling any needed outputs (CONTROL and/or switch settings)
and being sure that the BCD digits have been properly assigned. The
operation of interest is the passing of the primary address to the
interface. This is done by pretending that the interface is an HP-IB
interface and sending a "Talk Address" or "Listen Address" interface
message.

Where the HP-IB interface will actually send the specified interface
message, the BCD and GPIO interfaces set their Primary address to the
address specified by the "Talk Address" or "Listen Address" message. These
two interfaces don't distinguish between "Talk" and “Listen," they just
take the address. A "Listen Address" message byte is octal 40 plus the
primary address and a "Talk Address" message byte is octal 160 plus the
primary address. The example here will select primary address B3 (channel
A mantissa and exponent for BCD and eight-bit input B and output D for
GPIO).

ADDRS3 LDB R35,=43 !Listen Address 3

JSB X22,8NDCMD IHP-IB interface message util
RTN or further code.

3-28

Section 3: Performing I/0 Operations

HP-IB Addressing

The HP-IB interface has a lot of addressing requirements. First, there 1is
the distinction between a protocol command and an HP-IB interface message.
A protocol command is a byte from the CPU to the IOP that tells the IOP to
do something. An HP-IB interface message is a byte from the CPU to be
sourced on the HP-IB bus by the IOP with the ATN message true and is
supposedly destined for the interface functions in the devices on the HP-IB
bus.

The direction of data transfer is declared by sending the HP-IB interface
one of the two protocol commands: "Send My Talk Address"™ (opcode: 0108,
field: 0161, that is, Interface contrel - 5) or "Send My Listen Address”
(opcode: @108, field: @110, that 1is, Interface control - 6). The HP-IB
interface gets the HP-IB bus address, puts together the appropriate "Listen
Address" or "Talk Address" interface message and sources it onto the HP-IB
bus in order that all other devices know (these operations are illegal
unless the HP-IB is the active controller currently) whether to source or
sink data.

Note that we have sent a protocol command only and the interface has sent
an interface message independently. We could have sent the same interface
message by first sending the protocol command (opcode and field: 268 octal)
and then writing the HP-IB command (octal @77) to the output buffer.

The HP-IB interface is configured for output if the TA (talker active)
state is true and confiqured for input if the LA (listener active) state is
true. The interface maintains these states in accordance with the HP-IB
protocol and the interface messages on the bus. This is true whether or
not the interface is the active controller.

In addition to setting up the HP-IB interface for the ensuing data
transfer, the source or sink(s) on the HP-IB bus need to know whether to
talk or 1listen. This is done by forming the appropriate address command
byte (listen: 4@ octal + address, talk: 1008 octal + address) and sending it
out as an HP-IB interface message. It is prudent to send the "Unlisten"
interface message before a transfer to be sure that any devices left
addressed to listen are unlistened. These addressing and wunaddressing
operations are all done by putting together the appropriate Interface
message byte and sending it to the IOP using a "Send" protocol command.

Section 3: Performing I/0 Operations

3.4.8 Primary Addressing and Interface Message Subroutines

If you're about to output +to one or more devices; you should: send
"Unlisten" (interface message), send "My Talk Address" (protocol command
whose execution includes the sourcing of an interface message), and then
send a listen address interface message to each device which is supposed to
receive the data that is about to be output. If you're about te input from
a device on the bus you should: send "Unlisten" (interface message), send
"My Listen Address" (protocol command whose execution includes the sourcing
of an interface message) and then send talk address interface message to
the source device (interface message). If you want other devices to listen
also, just send their listen addresses (interface message) any time after
the "Unlisten."

Some examples:

l. BSet-up to output to device 5.

LDB R35,=77 |5end Unlisten

JSB X22,SNDCMD ! {Interface message)
LDB R36,=185 |Send My Talk Address
JSB X22,DIRCMD ! (Protocol command)
LDE R35,=45 1Send Listen Address 5
JSB X22,SNDCMD I (Interface message)

... now ready to execute code at "OUTPUT."

2. Set-up to input from device: 5.

LDE R35,=77 1Send Unlisten

JSB %22 ,S5NDCMD ! {Interface message)
LDE H36,=188 1Send My Listen Address
JSB 422 ,DIRCMD ! {Protocol command)
LDB R35,=185 15end Talk Address 5
JSB K22,SNDCMD ! (Interface message)

....now ready to execute code at "INPUT."

3-38

Section 3: Performing I/0 Operations

3. Set up to input from device 3 and have devices 6 and 7
also listen to the data from device 5.

LDBE R35,=77 1Send Unlisten

JSB X22,S5NDCMD 1 (Interface message)
LDB R36,=1686 1Send My Listen Address
J5B X22,DIRCMD ! (Protocol command)
LDB R35,=185 1Send Talk Address 5
JSB X22,SNDCMD ! {(Interface message)
LDE R35,=46 1Send Listen Address 6
J5B X22,5MDCMD 1 {Interface message)
LDB R35,=47 1Send Listen Address 7
JSB X222, SHDCMD ! {Interface message)
.... now ready to execute code at "INPUT."

Table 3-2. Execution Times

Primary address to BCD: .52 milliseconds.
Primary address to GPIO: $.58 milliseconds.

Interface message to HP-IB: | 8.7 milliseconds for the
first byte and 8.35
milliseconds for each
additional byte.

Send "My Talk Address"
and "My Listen" Address: #.45 milliseconds.

Interface messages in general are another consideration when using the
HP-IB interface (they also have some limited uses with the GPIO interface
as listed in the I/0 ROM manual under the SEND statement). In addition to
device addresses, there are interface messages which select segondary
addresses and perform assorted operations (trigger, clear, pell). These
interface messages are sent from the CPU to the IOP in exactly the same way
as data bytes for output except that the protocol command used is octal 260
(send) instead of octal 248 (output data). The utility routine SNDCMD that
is used in primary addressing and other places is a special case of the
send operation where there is only one byte to be sent as an interface
message.

3-21

Section 3: Performing I/0 Operations

The following example will trigger the device at HP-IB bus address 11.
Note that all three messages involved (Unlisten, Listen Address 11, Group
Execute Trigger) are interface messages and the HP-IE interface doesn't

need to be configured for input or output because there won't be any actual
input or output of data.

TRGR11 LDM R65,=77,53,18 !The three messages

LDE R@,=65 !Pointer to the messages
TRIGlp LDBE R35,R* 1Get next message

JSB X22,5SNDCMD lBend it

ICE RO IPoint to next cne

CMB R@,=78 !Done them al117

JNZ TRIGIp ! JIF no - net yet

RTHN | otherwize, done

This same operation could have been done by supplying the three interface
messages as & three—byte string to a routine which is identical to the one
labeled "OUTPUT" except that where the protocol command simple output
(octal 240) is used in "OUTPUT" you would use the send protocol command
(ockal 268) instead.

3.4.9 Miscellaneous I/0 Utilities

There are four protocol commands which perform utility functions on almost
all of the interfaces: Abort, Halt, Resume, and Send End—-of-Line Character
Sequence (the GPIO interface won't accept Resume and the BCD interface
won't accept Resume or Send EOL). There are five additional protocol
commands which perform utility functions on the HP-IB interface only. Two
of these, (Send "My Talk Address" and Send "My Listen Address") were
discussed in Primary Addressing. The other three, (Set REN True, Set REN
False and Parallel Foll) will be discussed here.

These protocol commands are sent to the IOP wusing one of the command
handshaking utility routines (there is no transfer of data with the
exception of the parallel poll operation which returns a response byte) and
the action is done when the command handshake routine has returned. Some
of these are interrupt-type commands (Abort, Halt, Resume, and the two REN
operations) and the others are direct-type commands. The difference shows
up in the protocol command handshake used and the method of waiting for the
I0P to say it's finished with the operation.

3=32

Section 3: Performing I/0 Operations

The specific cperations performed by the four general utility protocol
commands are those explained in the I/0 ROM manual under ABORTIO, HALT,
RESUME, -and SEND;data...EQL. For this last one, it is the "EOQOL"™ that is
performed by the utility protocol command. The "SEND;data..." part is at
your option on the assembly language level and would have been done
according to the "OUTPUT" operation just described.

ABORT LDBE R36,=108 !Protocol - Abort
JSB, K22, INTCMD ! (interrupting type)
JSB X22, INTCHK {Uninterrupt the IOP
RTN
HALT LDB R36,=118 |Protocel = Halt
J5B X22,INTCMD ! (interrupting type)
JSB K22, INTCHK tUninterrupt the IOP
RTN
RESUME DB R36,=111 1Protocol = Resume
JEB X22,INTCMD ! {interrupting type)
JSB X22,INTCHK tUninterrupt the IOP
RTHN
SNDEQL LDB R36,=187 |Protocol = Send EOL seguence
JSB X22,DIRCMD ! (direct type command)
JSB X22,0=B=0 IWait till I0OP is finished
RTHN

The following examples show usage of the three HP-IB utilities that were
not discussed in Primary Addressing. The first twe allow the I/0
programmer te sSet the "Remote Enable" interface single line message (REN
line) true or false.

REMOTE LDB R36,=101 IProtocol = seb REN True
JBB X22,INTCMD ! {interrupting type)
JEB X22,INTCHK !Uninterrupt the IOP
RTN

LOCAL LDB R36,=1p2 !Protocol = set REN False
JSB X22, INTCMD ! (interrupting type)
JSB K22, INTCHE IUninterrupt the IOP
RTHN

This last utility performs a parallel poll operation on the HP-IB interface
bus. It is assumed that all required parallel poll configuring operations
have been done using the send operation to handshake the appreopriate
interface messages. The response byte which came in from the parallel poll
operation (ATN and EOI both set true and then the data lines read) will be
returned by this example in R34.

Section 3: Performing I/0 Operations

PPOLL LDE ER36,=164 IProtocel = parallel poll
JSB X22,DIRCMD ! (direct type)
J5B X22,IBF=1 IWait till response is ready
LDED R34,R26 1Get the response byte
JSB X22,0=B=0 IWait till IOP is done
RTN

Table 3-3. Execution Times for HP-IB Interface Operations

Set REN ktrue or false B.66 milliseconds

Parallel poll .43 milliseconds

Execution times for sending the EOL sequence are shorter than those for
outputting data bytes because the IOP already has the bytes to send. For
the zerial interface, this deesn't matter because the baud rate determines
the speed. The BCD interface doesn't have such a sequence., For HP-IE and
GPIO figure #.7 milliseconds to handshake the command and @.865 (HP-IB) or
@.15 (GPIO) milliseconds per character sent.

3.4.18 Burst Input/Output

Burst 1/0 is the fastest method available for data transfer and is also the
most restricted in terms of handshakes and formats. There is considerable
overhead required to set up and terminate a burst transfer so it shouldn't
be used for very short strings of data.

Burst I/0 corresponds to the TRANSFER FHS statement in the I/0 ROM. Recall
that the serial interface does not support this kind of transfer and that
severe restrictions apply in the cases of the BCD and GPIO interfaces.

Prior to a burst transfer you must configure and address the appropriate
interface as discussed under Primary Addressing. Termination of a burst
transfer is discussed with interrupt service routines and will be handled
by the I/0 ROM or the Mass Storage ROM (if either one is present). We will
assume for now that a ROM is handling the termination.

t is the IOP and not the CPU that decides when the time for transfer
termination has arrived; the I1/0 programmer, therefore, must be sure to let
the IOP know the proper criteria for it. The two possible criteria are:
the specified number of bytes has been transferred, and the interface is an
HP-IB, The transfer must be an input and a device dependent message has
been accepted with the EOI line true (that is, it was an end message). The
count is sent to the IOP before the burst using the technique discussed in
Special Control Operations Not Available With BASIC. The EOI option is
selected by a bit in the protocel command which will be discussed next.

3-34

Section 3: Performing I/0 Operations

The protocol command that tells the IOP to execute a burst transfer is a
direct command. The opcode is @@l@ and the field is @, bit 2. bit 1, and
bit 8.

Bit 2 - Set for an input burst if you don't want the EOI condition to
terminate the burst. This is a disable bit (unlike all the others). TE
you want the transfer to be able to terminate on receipt of an EOI as
well as upon exhaustion of the byte count, leave this bit clear {8).
Bit 2 has no meaning for output bursts.

Bit 1 - Set for an output burst if you want the interface to send the
end-of-line character sequence after it has finished the burst cutput.
If bit 1 is set, and the interface is an HP-IB interface, and it has
the number 128 decimal in control register 16 (EOI enabled, character
count = @) then the END message will be sent true along with the 1last
character in the burst (that is, it will be sent as an END message
rather than a data byte message).

1f the interface sends an EOL character seguence, it will do so after it
has interrupted the CPU to break it out of its burst loop. If you leave
this bit clear and the interface is an HP-IB, it will send the last byte
as an END message and will not send the EQL character sequence
regardless of the contents of control register 16. The BCD interface
either has (bit is set) or doess not have {bit is clear) an EOL sequence.

Bit @ - This bit indicates the direction of the burst. If the bit is
set to 1, then an input transfer will be done. If the bit is clear (8)
then an eutput transfer will be done.

The four wvalid versions of the burst protocol command in terms of each
interface are:

@44 (octal): Output with no EOL character segquence at the end. The
HP-IB interface will send the last byte as an END message. The BCD and
GPIO interfaces will simply terminate the transfer.

@46 (octal): Output using the EOL character sequence at the end of the
transfer. The HP-IB interface will send the EOL sequence if it is one
or more characters long. If it is zero characters the EOI enable bit is
set (control register 16 = 128 decimal) then the last byte will be sent
as an END message as though this were protocol command 44. If control
register 16 contains a @, the HP-IB interface will not do anything at
the end of the burst except terminate it. The BCD interface doesn't
have an EOL seguence. The GPIO interface will send its EOL character
sequence after it has terminated the transfer.

3-35

Section 3: Performing I/0 Operations

P41 (octal): Input with termination upon receipt of an END message or
exhaustion of the byte count on the HP-IB interface. The BCD and GPIO
interfaces regard this protocol command as an error.

@45 (octal): Input with termination on exhaustion of byte count only.
This 1is the normal protocol for burst input. All three interfaces will

simply transfer as many bytes as were requested and then terminate the
transfer.

Once the interface is properly configured, addressed, and supplied with the
appropriate protocol command the CPU must prepare for burst operation and
then enter a burst loop by a jump (JSB) to it. When the transfer Iis
finished the CPU will return to the code following this jump instruction.

3-36

Section 3: Performing I/0 Operations

3.4.11

Burst—In and Burst-Out Utility Subroutines

Assume the same CPU register conventions as in previous examples: R38,31 is

the byte count,

R34 contains your

BURSTT

BOUTSB

BOUTLE

BURETN

BINSUB

BINLOF

JSB
JSB
JEB
LDB
STED
STED
JSB
CLE
STED
STMD
JSB
J5B
J5B
RTN

DRP
ARP
POBD
5TBI
JMP

JSB
J5B
JSB
LDB
S5TBD
STBD
J5B
CLB
STBD
STHMD
JEB
JE5B
JEB
RTHN

DRE
ARP
STBI
LDBI
PUBD
JMP

R32,33 is the buffer
the base address, CCR/PSR address,; and the OB/IB address.

R27 contain
Assume also that

pointer and R22 through

choice of burst commands as described previously.

X22 ,5COUNT
X22,DISINT
X22,0BF=0¢
R37,=2
R37,R24
R34,R26
R22,0=B=02
R37
R37,R24
R26,=TEMPZ2
X22,BOUTSE
X22,REINT
X22,0=B=0

37

32

R#,+R#
R#,=TEMP2
BOUTLE

X22,SCOUNT
X22,DISINT
X22,0BF=0
R37,=2
R37,R24
R34,R26
X22,0=B=0
R37
R37,R24
R26,=TEMP2
X22,BINSUB
X22,REINT
X22,0=B=8

37

32

R4, =TEMP2
R#,+R#
BINLOP

1Send the byte count
IDisable all interrupters
IWait till the OB is empty
15et the CMD bit

I' ip the CCR

Write the burst command

! then wait for not busy

ISet the CCR to @

|Prepare OB index address
1Go do the burst (magic RTN)
IUnde the DISINT above

IWait till IOF is done

iData bytes go through here

! with this stack pointer
IGet next byte te send

1Send it (this halts the CPU)
|Hepeat apparently farever!

1Give byte count to IOF
!Dizable all interrupters
IWait till OB empty

|Set the CMD bit

lin the CCR

IWrite the burst command
! then wait for not busy

1Set the CCH to 8

{Prepare OB index address
!Go do the burst (magic RTN)
{Turn interrupters back on
IWait till IOP is done

IData bytes pass here

! using this stack pointer
18ignal to start up the IOP
IRead a byte (halt til IBF)
tPut it into the buffer
IRepeat apparently forever!

3-37

Section 3: Performing I/0 Operations

Here are the utility routines called from the burst examples. SCOUNT sends
the byte count to the IOP. DISINT disables all interrupting devices so the
burst operation will not be interrupted (global interrupt disable is not
available for this because the IOP must interrupt the CPU in order to
terminate the burst). REINT re-—enables all interrupting devices to restore
normal operation after a burst is finished.

SCOUNT LDBE R36,=231 IProtocel = write control 25
JEB X22,INTCMD ! (interrupting type)
STBD R3@,RZ6 |Least significant byte
JSB X22,0BF=@ IWait till IOP has it
STBD R31,R26 IMost significant byte
JSB X22,0BF=p IWait i1l IOP has it
RTN
DISINT LDB. R37,=2 !Disable keyboard interrupts
STBD R37,=KEYDIS ! (DAD 177482)
LDB: ‘R37.=1 IDisable the first timer
STBD R37,=TIMIS I (DAD 177412)
LDE R37,=181 !second timer
STBD R37,=TIMDIS
LDB R37,=2p1 lthird timer
STBD R37,=TIMDIS
LDB R37,=301 1last timer

STBD R37,=TIMDIS
I I |
| | 1

Note: the next operation (disabling the IOPs from interrupting) must be
done to each IOP which is present (including the one which is geing te do
the burst; it's part of the command handshaking for burst). If you know
which IOPs are present, they can be disabled individually. In this
example, we assume that the I/0 ROM is present (or the Mass Storage ROM or
the Plotter/Printer ROM) and that the system RAM variable byte which we'll
call SCLOG (DAD 1#8667) has a bit set for each select code (IOP) present.
Do not Jjust do all eight possible select codes (because of the lack of

handshaking from nonresident select codes). This note applies also to the
REINT operation that follows.

| I |

| I |

FUMD R24,+R6 !5ave pointers to the

PUMD R26,+R6 ! bursting IOP

LDM R24,=1286,377 IStart at select code 3

LDM R26,=121,377

LDB RZ@,=18 I{There are B select codes

LDBD R21,=5CLOG 1Get the presence indicator
DIST@1) { I I

3-38

Section 3: Performing I1/0 Operations

DISTA1

DIST@2

REINT

RENTA1

REIN@2Z

TSB
JEV
LDBE
JSB
LRB
ADM
ADM
DCH
JNZ
POMD
EOMD
J5B
RTN

PUMD
PUMD
LDB
LDBD
LDM
LDM
TSB
JEV
JSB
LEB
ADM

oce
JHNZ
POMD
POMD
LDB
STBD
LDBE
STBD
LDB
STED
LDB
STED
LDB
STBD
RTN

R21

DIST@2
R36,=60
%22, INTCMD
R21
R24,=2,0
R26,=2,0
R20

DISTA1
R26,-R6
R24,-R6
%22, INTCHK

R24,4R6
H26,+R6
R28,=10
R21,=SCLOG
R24,=128,377
R26,=121,377
R21

RENTAZ

%22, INTCHK
RZ1
R24,=2,08
R26,=2,0
R20

REINGL
R24,-R6
R37,=1
R37,=KEYDIS
R37,=2
R37,=TIMDIS
R37,=182
R37,=TIMDIS
R37,=282
R37,=TIMDIS
R37,=302
R37,=TIMDIS

1Is this one here?

1JIF No — not this one
1Protocol = Interrupt control
! (interrupting type)

1Set up for next select code

{Have we tried all B select codes?
IJIF Ho - try the next

| else restore pointers to the

! I0P we're going to use

! and uninterrupt it

{Save pointers to the IOP

| we've bursted with

iThere are B select codes
1This tells which ones to do
| start with select code 3

1Is this select code present?
1JIF Mo - not this eone

| else uninterrupt it

tSet up for next select code

1Have we done all 8 of them?
1JIF No - go for the next one
IRestore pointers to IOP we've
| just done burst with
iRe-enable the keyboard

tand the timers

3.4.12 Burst Command Protocol

Before proceeding to burst termination,
command handshaking that's used with burst
interrupting.

at the protocol
1/0 because it's both direct and

let's take a lock

Section 3: Performing I/0 Operations

As already mentioned, each interrupting device must be disabled prior to a
burst operation and re-enabled afterward. The Kkeyboard and the timer will
be disabled and re—enabled according to the examples. The procedure for
handling IOPs is explained next.

To prevent an IOP from interrupting the CPU, the CPU sends the protocol
command Interrupt Controcl (opcode @@11, field is @, which is egqual to 68
octal). There is an interrupting command handshake procedure sent to each
IOP currently on the bus (could be up to four, one for each I/0 backplane
slot currently in use for burst I/0). The IOP interprets this command as a
no operation command and goes through all the motions of accepting an
interrupting protocol command from the CPU but does nothing about I/O in
response.

During this time, the IOPs cannot interrupt the CPU; therefore, the IOP
interrupts are said to be disabled, and the burst transfer will be
protected. The last thing the DISINT procedure does is execute the INTCHK
procedure on the current IOP. The other IOPs will remain in the
interrupted state throughout the burst transfer.

The IOPs can continue their previous operations after the CPU has executed
the INTCHK operation. This is the normal termination te an interrupting
protocol command.

3.4.13 Burst Execution Speed

Data transfer rates are approximately 25K bytes per second for the HP-IB
interface and 20K bytes per second for the BCD and GPIO interfaces.

3.4.14 Interrupting Operations

We have seen interrupt-type protocol commands that involve the IOP being
interrupted by the CPU. There is a set of operations which involve the CPU
being interrupted by the IOP and this 1is referred to as "Interrupting
Operations." Because these operations are involved in more than just input
and output data transfers, they will be discussed from the standpoint of
the reason the IOP is interrupting. These discussions will include the
action to be taken by the CPU interrupt service routine. Following this
will be a discussion on the general requirements for this service routine
and how and when you can let some of the enhancement ROMs work for you.

The shell of the CPU interrupt service routine will find out which IOP
interrupted and why. The reasons for interrupting are each discussed here.
The binary number shown with the name of each reason is the byte that
explains why the IOP interrupted the CPU.

3-40

Section 3: Performing I/0 Operations

Interrupt Output Ready (6008 @8008)

This is the IOP interrupting to get the next byte during a transfer out by
interrupt. The IOP is ready to output another byte. The procedure is to
find the next byte that should be output to that select code and write it
to the OB. = - = =

Beware of multiple byte operations and termination of the transfer. IE the
interface is BCD or GPIO deing 16-bit format, the TFLG bit in the PSR (bit
6) will be set and you will be expected to transfer bytes until TFLG is
clear. (The interfaces interrupt for each handshake operation and will
accept as many bytes per interrupt as are needed to set up the next output.
The number of bytes is determined by the interface.)

Termination of the transfer is done by the CPU when it decides that the
transfer is completed (that is, it doesn't want to be interrupted for a
"next" output operation). This is done by setting the CED bit in the CCR
before writing the last byte to the output buffer just as is done in simple
output. The difference is in the response of the IOP. It will execute an
end—-of-line character sequence (if it has one) and will then interrupt the
CPU one last time to verify that the end-of-line character sequence has
been sent (even if no characters were transmitted).

INTOUT |Procedure pointer and count for this transfer
! R3@,31 <=count, R32,33<= pointer

INTTH1 DCM R39 1Is this the last byte?
JNZ INTT82 1JIF No - not last byte yet
LDE R37,=4 1 otherwise, set the CED bit
STBD R37,R24 ! in the CER

INTTRZ POBD R37,+R32 !Get the next byte to send
STBD R37,R26 ! and give it to the I0P

tUpdate the pointer and count now in case
I TFLG is #

JSB X22,0BF=0 !Wait till the IO0OP takes it
LDBD R37,R24 iDoes the IOP want another?
ANM R37,=108 ! (that is, is TFLG set?)

JNZ INTTBI1 1JIF Yes — get another one
JMP common end of Interrupt Service Routine

Burst Termination (9888 PP@l)

This is the IOP interrupting to terminate the burst operation (in this case
the next instruction in the burst loop). It 1is on the R6 stack along with
other entries put there as part of the interrupt service routine. This
section of the interrupt service routine performs burst termination as
described next.

Section 3: Performing I/0 Operations

The location of the return address (the "interrupted address," that of the
burst loop) is a known distance down the R6 stack. Servicing this interrupt
amounts to finding that address and replacing it with a special address in
system ROM. This address is that of a RTN instruction in a system routine.

When the common code at the end of the interrupt service routine has
cleaned up and returns (to what would normally have been the next
instruction), CPU control passes to the special system address and executes
an additional RTN instruction. This additional RTN is what does the return

operation from the burst loop to the code following the jump (JSB) into the
burst loop.

BRSTRM LDM R38,=316,0 IThe special address
SBM R6,=DSTNCE IPoint to return address
STMD R34,R6 !Replace the address

ADM R6,=DSTNCE !Restore R6 to original
JMP Common ISR end code

Register 1 Condition Met Interrupt (0088 @014)

When you have written an interrupt mask to control register 1 of an
interface and the masked condition is met, the interface will interrupt the
CPU with this condition. What you do about it is pretty much application
dependent. For example, we'll assume that you at least want to read status
register 1 to see what the condition was and clear the oCCUrrence.

REGST1 LDE R36,=1 IProtocol = Read Status 1
JSB X222, INTCMD ! (interrupting type)
J5B X22,I1IBF=1 Wait for IOP to get it
LDBD R36,R26 'Read it
LEB R37,=4 tSet CED
STBD R37,R24 | to say that's all
JEB X22,0=B=p0 IWait till IOP's got it

J5B X22, INTCHE !Uninterrupt the IOP
!Take whatever action is appropriate
!to flag the occurrence of this
linterrupt.

JMP Common End of ISR code

3-42

Section 3: Performing I/0 Operations

Reset PFinished ... Self-Test Passed (08088 8811)

The I0OP interrupts the CPU after it has completed the reset operation
(RESET statement, power—on initialization, or you did the reset in assembly
code). This 1interrupt occurs when the self-test is successfully passed.
If it is at power-on, then the select code should be logged in (refer to
SCLOG in the discussion of burst--disabling all interrupters), otherwise
you don't need to do anything here. Whether or not it is at power-on is
something you must flag in the RAM area if you are going toe handle this
procedure.

RESTOK LDBD R37,X22,PWRON? 1Is this power on time?
JZR RSTrtn t JIF no - not power on
LDBD R24,=3CL0OG ! otherwise, log it in
LDB R35,=1 ITentative select code 3
RETK1p CMM R24,=128,377 IRight select cocde?
JZR RSTmch IJIF Yes - this one
SBM R24,=2,08 ! else bump to next
LLB. R35 ! select code
JMP RSTKlp ! try again
RSTmch ORB R34,R35 tSet this bit into log
STBD R34,=5CLOG ! byte and put it back.
R5Trtn RTN

Reset Not Finished ... BSelf-Test Failed (xxxx xx1l)

This is how the IOP notifies the CPU of an error c¢ondition. There are
three main types. If the reason for interrupting is 1111 1P11, then the
I0P is reporting self-test failure in response to a reset operation (just
like RESTOK except it flunked the test). Tf the byte is 1111 1111, then
the IOP is reporting an "Invalid I/0 Operation" error (in BASIC that's
"Error 111: I/0 DPER"). The only other kind of error reason byte is B@xx
xxll and this presents an interface-type dependent error. The
corresponding error number reported by BASIC 1is obtained by adding 112
decimal to "xxxx," giving an error number between 113 and 122 decimal.
What you do in response to any one of these error conditions is application
dependent. It is recommended that you set an appropriate flag in your RAM
area and have vyour binary routines check such a flag at those times when
such an error might occur. If you abort directly out of the interrupt
service routine, you'd better be careful handling the stack pointers.

Interrupting With Available Input Data (BEP8 P168)

This is much 1like interrupting when ready for output. In addition to
checking if the CPU has had enough input, you must also check to see if the
I0P has decided that the transfer should terminate (refer to the option
bits discussed under Interrupt Input). Multi-byte transfers are possible
here just as they were for interrupt output.

3-43

Section 3: Performing I/0 Operations

INTIN 1Get count and pointer for this transfer
! R38,31 <= count, R32,33 <= pointer

JSB X22,1BF=1 IWait for first data byte

INTlop LDBD R36,RZ6 !Get this data byte
PUBD R36,+R3Z2 1Put it into the buffer
DCM R3P 1End of buffer?
JZIR INTend IJIF Yes — no more wanted
ANM R37,=4 1I0F wants to stop?
JNZ INTend IJIF Yez (R37 from IBF=1)
STED R#,R26 'Ask for another byte
INTwat LDBED R37,R24 IRead PSR
JOD° INTlop IJIF IBF (got another}
ANM R37,=108 IIs TFLG set?
JNZ INTwat !JIF Yes - worth waiting
JMP INTdne ! otherwise done for now
INTend LDB. R37,=4 !Set CED to end transfer
STBD R37,RZ24
INTbsy LDBD R37,R24 IWait till BUSY = @
ANM R37,=2 ! {Eorget OBF)
JNZ INTbsy
STBD R37,R24 1Clear CED

ILog the fact that the transfer is finished

INTdne JMP Common ISR End Code

End—of-Line Character Sequence Has Been Sent (@808 #119)

This interrupt occurs when, after an interrupt output transfer operation,
the IOP has finished sending an end-of-line character sequence according to
control registers 16 through 23. The BCD interface does it immediately
because it has no such sequence. The only thing you need to do is to log
the fact that the transfer operation is now complete. The IOP will
interrupt with this reason whether or not any characters were actually
sent.

Interrupt Service

The above examples of code must be in the shell of an interrupt service
routine to get ready for the specific response code to be executed, and
then to clean up after such execution. It is the purpose of the shell to
insure that processing the interrupt (which can occur between any two
consecutive assembly language instructions) does not in any way leave
alterations in the machine state.

3-44

Ssction 3: Performing I/0 Operations

In addition to saving and restoring the machine state, it is necessary to
check for the R6 return address overflow condition. The shell gets the
select code (actually, the CCR address) of the interrupting IOP and the
reason for the interrupt. The code can branch appropriately to Process the
interrupt.

All of these code sections end by branching to a common end segment which
restores registers and returns CPU execution to its normal flow.

For this example we will save CPU registers 20 through 47. The code shown
here does not include the hook at 1RQ26 which wvectors the interrupt
occurrence. That will be discussed next.

ISR PUMD R48,+R6 1Save registers
LDM RAG,R30
PUMD R483,+R6
LDM R4G,R20
PUMD R40,4R6
LDM R28,R6 1Test for overflow
SBM R28,=44,8 ! point to return address
i (this number is decimal 12
1 plus the number of saved
| registers on the R6 stack)
LDOM R3B,=5,8 1 assume IRQPAD
LDMD R46,R28
CMM R46,=IRQPAD
JZR MOVSTK v JIF IRQPAD was interrupted
CMM R46,=IRQRTN
JNZ STACK ok
LDM R3G,=2,8 ! (IRQRTN was interrupted)
MOVSTK L[DM R32,R28
ADM R32,R30
LDB R37,=4 | this moves 32 of 36
MVSTK1 POMD R4§,+R32
PUMD R48,+R20
DCcB R37
JHZ MVSTK1
POMD R44,+R32 1 this does the last 4
pUMD R44,+R28

SBM RG,R38 1 adjust R6

STCKok CLM R26 1Get interrupting select code
DCM R26 | addresses for CCR & OB
LDBD R26,=INTRSC ! (DAD 1775886)
STMD R26,R24 1R24 <= pointer to CCR/PSR
ICM R26 1R26 <= pointer to OB/1B

LOMD R22,=BINTAB !Get our base address
JSB ®22,1BF=1 tWait for dummy byte

LDED R37,R6 1Acknowledge interrupt
JSB X22,IBF=l iWait for reason byte
CLB R34

3-45

Section 3: Performing I/0 Operations

STED R34,R24 IClear the CCR

LDBD R34,R26 |Read the reason for interrupt
! branch as appropriate to the
! individual routines

Common End Code for the Interrupt Service Routine

[LABEL] POMD R40,-R6 !Restore registers
STMD R4@,R20
FOMD R4@,-R6
STMD R44,R30
POMD R48,-R6
STBD R#,=INTRSC 'I0Ps need this.
RTN

INTRSC (DAD 17758@) is a Special translator address. When it is read in
response to an IOP interrupt, the interrupting translator provides the
least significant byte of its own CCR/PSR address.

Taking the Interrupt Vector

The hardware of the CPU, the I0OP, and the translator will make sure that
when an IOP needs to interrupt for service, it will eventually get the
chance to do so. When it does, the CPU will first save a return address on
the R6 stack, then branch to a special RAM location called IRQ28. If Yyou
are going to have an interrupt service routine, the only way you can get
control of the interrupts is to take the hook at IRQ2a.

What we're going to discuss is when to take the hook and how to return
control to the system. If the I/0 ROM, the Mass Storage ROM, or the
Plotter/Printer ROM (or any combination of these) is plugged in, then the
hook will have been taken immediately. Any one of these ROMs will handle
power-on, errors, and resetting. The I/0 and Mass Storage ROMs will also
handle burst termination for You. You might want to do some interrupt
operations in your own interrupt service routine and have a ROM handle
others. You can do this if you follow a few precautions:

¢ Before you take the hook by storing your vector in it, read the old
vector and store it in your RAM area.

e If the first byte of the old vector was a RTN instruction, then the
hook hasn't been taken since power-on.

e Disable interrupts globally before you change the code at IRQ29

whether taking it over or giving it back. This is critical code.
Remember to re-enable them after you've made the change.

3-46

Section 3: Performing I/O0 Operations

Interrupt Input and Output Operations

We have already discussed the interrupt service routine and it 1is this
routine's response segments for input and output that do most of the work
for an interrupt input or output operation. It is perhaps misleading to
call it a procedure. It is more like a process.

The CPU initiates this process (as described next), +the IOP and the CPU
cooperate during the process, and some occurrence terminates the process,
The cooperation and termination are what the interrupt service routine
does. MNext 1is & discussion of the preparations reguired for the CPU to
initiate the process.

Preparation for an interrupt input or output includes ewverything you must
manage for the simple case such as configuration and addressing. You must
also arrange a byte counter and pointer in your RAM area so that the
interrupt service routine, knowing which select code is interrupting, and
knowing the direction of the transfer, knows where to find them. You must
be sure that the process will be legal: the interface is either not busy,
or it is full duplex and not busy in this direction. If you are using any
of the input termination options, you must be sure that the necessary
preparations have been made (count to control registers 25 and 26, and/or
Delim character to control register 2Z7).

The protocol command handshake types for interrupt input and output are:

e If the interface is not full duplex, both commands are direct because
the interface cannot begin a new transfer while it is still busy.

e If the interface is full duplex, the output command is the
interrupt—type. The input command is uniquely handled by skipping the
usual test for OBF=BUSY=p before the command is written to the OB in a
manner similar to that used for direct commands.

The interrupt output protocol command has no options. It is 242 octal and
the transfer terminates when the CPU sets the CED bit. The corresponding
input command has three bits which specify optional conditions. The I0P
declares the transfer finished by setting the PED bit. These correspond to
the conditions explained under simple input. In the syntax of the
TRANSFER; INTR statement: Bit @ set = E0OIL, Bit 2 set = DELIM, and Bit 3 set
= COUNT.

Once the appropriate proteocol command for interrupt input or output has
been properly passed to the IOP the process has been initiated. The CPU
can continue and let the IOP and the interrupt service routine take over.
In the following examples it 1is assumed that all of the above-mentioned
preparation has taken place and, for the input examples, the termination
option bits are in R34.

3-47

Section 3: Performing I/0 Operations

Full Duplex Input LDE R36,=22 IProtocol = input, intr
ORE R36,R34 !Fold in the options
J5B X22,0BF=@ IMustn't crash the 0B
LDB R37,=2 tSet CMD bit
STBD R37,R24 ! in the CCR
STBD R36,R286 IWrite the command
J5B X22,0BF=@ Wait till IOP has it
CELB R37 IClear CCR
STBD R37,R24
RTH INo wait for BUSY={
Full Daplex Output LDB R36,=242 !Protocol = output, intr

JSB X22,INTCMD ! (interrupting type)
JS8B K22,INTCHE !Uninterrupt the IOP

RTN INo wait for Busy=08

Net Full Dup In LDB R36,=22 |Protocol = input, intr
ORB R36,R34 I{Fald in the options
JS5B. X22,DIRCMD | (direct type)
RTN INo wait for BUSY=@

Mot Full Dup Qut LDB R36,=242 1Protocol - output,intr
JsB X22,DIRCMD ! (direct type)
RTN INo wait for BUSY=@

Data transfer rates for interrupt input and output from assembler code will
not be much faster than those for BASIC language operation because of the
large overhead for the interrupt service routine. For higher speed
concurrent 1/0, you should consider a polling operation over simple input
and output processes. To do this, the CPU must poll each card to see if it
is ready for data transfer.

3.4.15 Simulation of I/0 ROM Statements
In this section, those statements provided by the I/0 ROM will be analyzed
in terms of the protocol commands they use. These statements can be very

useful for simulating the operation of your binary code.

ABORTIO: The protocol command "Abort" (8lege O@@@) is sent to the
interface.

ASSERT: The given byte is written into control register 28.

3-48

Section 3: Performing I/0 Operations

CLEAR: This statement has two forms: one with primary addressing and one
without. If there is no primary address then the HP-IB interface message
"DCL" or "Device Clear" is sent. If there is a primary address (or a batch
of them), an addressing routine will be done. This will send the
"Jnlisten" interface message, execute the "Send My Talk Address" protocol
command, send a "Listen Address" interface message for each primary address
given, and then send the HP-IB interface message "SCD" or "Selected Device
Clear."

CONTROL: This statement performs the control operation as described. The
I/0 ROM will net allow you to access control registers 25 through 29 with
this statement.

ENABLE INTR: Identical to CONTROL to Register 1.

ENTER: This statement performs addressing if a primary address is given and
then sends the simple input protocol command and inputs bytes until its
argument list 1is satisfied. The addressing done consists of sending the
“iinlisten" interface message, executing the "Send My Listen Address"
protocol command, and sending the appropriate nP31k Address" interface
message.

HALT: This statement sends the "Halt" (0l@@ 1888) protocol command.

LOCAL: This statement may or may not have a primary address. If it does,
then the addressing seguence of =end the "Unlisten" interface message,
execute the "Send My Talk Address" protocol command, send a "“"Listen
Address" interface message to each primary address given, and then sends
the HP-IB "Go to Local" interface message. 1f no primary address is given
theri the protocol command "Set REN to false™ (81@@ ©91@) is executed.

LOCAL LOCKOUT: This statement sends the HP-IB "Local Lockout" interface
message.

OUTPUT: This statement will do the addressing routine if there is a primary
address (or addresses) provided, and will then handshake the simple cutput
protocol command (1918 @0@89) and output however many bytes it takes to
satisfy the argument list. The addressing routine consists of sending the
"Unlisten" interface message, executing the "Send My Talk Address" protocol
command, and sending the appropriate "Listen Address" interface message(s).

PASS CONTROL: If a primary address is indicated, this statement will send
the corresponding "Talk Address” interface message. With or without the
talk address it will then send the HP-IB "Take Control" interface message
and then exit the controller active state.

PPOLL: This function executes the Parallel Pell protocol command
(p10@ ©@18@) and returns the response byte.

3-49

Section 3: Performing I/0 Operations

REMOTE: If a primary address (or addresses) is provided this statement will
send an addressing seguence and then execute the Set REN True (8108 2901)
protoceol command. If no primary address is given, only the protocol
command will be executed. The addressing seguence is: send the "Unlisten®
interface message, execute the "Send My Talk Address" protocel command then
send a "Listen Address" interface message for each primary address given.

REQUEST: The given "response byte" is written to control register 29.

RESET: The RESET bit in the CCR for the given select code is strobed to
initiate the reset for the IOP. The CPU enters a wait loop for about 400
milliseconds to give the IOP time to complete its reset operation and
interrupt with the self-test results. The interrupt service routine logs

an error if the reason for interrupting is the one that indicates the
self-test failed.

RESUME: This statement executes the "Resume" protocol command (8186 18081).

SEND: This is a wvery useful statement for simulation purposes. These are
its field options:

CMD: All expressions following this keyword are converted into byte
strings and are sent as interface messages (that is, they are sent to
the IOP using the "Send" protocol command (8180 &688)).

DATA: All expressions following this keyword are converted into byte
strings and are sent as data bytes (that is, they are sent to the IOP
using the simple output protocol command (10128 @0888)).

TALK: The expression following is reduced to five bits and added to
octal 188 to form a "Talk Address" interface message. This result is
sent to the IOP using the "Send" protocol command (1011 @6088).

LISTEN: The expressions following this keyword are reduced to five bits
and added to octal 40 to form a "Listen Address" interface message which
is sent to the IOP using the "Send" protocol command (@180 @8E3).

SCG: The expressions following this keyword are reduced to five bits and
are added to octal 140 to form a Secondary Address interface message
which is sent to the IOP using the "Send" protoceol command (1811 @0@8).

UNL: Octal 77 ("Unlisten"} i1s sent to the I0OP using the "Send®” protocol
command (1811 @6684).

UNT: Octal 137 ("Untalk") is sent to the IOP using the "Send" protocol
command (1811 @&888@).

3-58

Section 3: Performing I/0 Operations

MLA: This keyword executes the "Send My Listen Address” protocol command
(218 @118).

MTA: This keyword executes the "Send My Talk Address" protocol command
(01g@ @181).

SPOLL: This function executes an addressing routine if a primary address
is provided and then performs the following sequence:

e Octal 38 ("Serial Poll Enable") is sent to the IOP using the "Send"
pProtaocol command.

e The simple input protocol command (#8@1 @801l) is sent and one byte
is input.

e Two bytes (octal 31: "Serial Poll Disable"™ and then octal 137:
"Untalk") are then sent to the IOP using the "Send" protocol
command .

The addressing sequence used for a primary address is:

e Send the "Unlisten" interface message (that is, send it te the IOP
using the "Send" protocol command).

e Execute the "Send My Listen Address" protocol command.
e Send the appropriate "Talk Address" interface message.
This function statement returns the single byte which was input.

STATUS: This statement executes the read status protocol operation as
discussed above.

TRANSFER: This statement executes interrupt I/0 and burst I1/0 according
to the INTR or FHS keyword. Three bytes are written to control
registers 25 through 27 to set the count and delimiter options. If no
count 1is specified, the length of the buffer string is sent as the
count. The delimiter byte is always written (as a coding abbreviation),
but it only has a defined wvalue if it has been specified for an
interrupt input and it won't be used unless that specification is made
(the enable bit must be set in the protocol command). The EOI keyword
causes the corresponding bit to be set in the protocol command. After
the protocol command has been assembled, it is sent to the IOP and the
CPU either enters a burst loop or returns from starting an interrupt
process.

3=51

Section 3: Performing I/0 Operations

TRIGGER: This statement performs an addressing operation if a primary
address {@ddreﬁﬁesy is specified, and then sends the HP-IB "Group
Execute Trigger" interface message. The addressing operation consists
of sending the "Unlisten" interface message, executing the "Send My Talk
Address" protocol command and then sending a "Listen Address" interface
message for each primary address indicated.

Notice that the addressing operation invoked by a primary address is the
same 1in all the above statements and functions in the I/0 ROM. To
summarize:

e For inputs: send Unlisten, My Listen Address, and the talk address given
as the primary address.

e For outputs: send Unlisten, My Talk Address, and a listen address for
each primary address given.

3.4.1¢6 Timing Methodology

The I/0 protocol command set was timed with the clock in the HP-85 using a
BASIC program to repetitively call a binary program which executed the
command. In order to obtain usable timing data for the I/0 programmer who
wishes to do I/0 in assembly language, the times reported (except for the
ones given as BASIC language comparisons) are the times required for
execution and/or data transfer between the IOP and the CPU registers. &all
times having to do with fetching and storing BASIC variables and calling
the binary code through BASIC statement execution have been subtracted out
as described next.

The time reguired for calling the binary code from BASIC was removed by
repeating the timing loop twice. A flag variable was set to @ before the
timing loop was entered the first time and was tested for @ after the loop
finished. If the flag was found to be @, it was given some other value
(depending on the operation) and the loop was re—entered by a GOTO command.
When the test after the loop found the flag to be not @, the first time was
subtracted from the second time and the difference diwvided by the number of
repetitions. The resulting time was taken as the execution time of the
operation.

The binary code accepted the flag as one of several parameters. After
fetching all parameters into CPU registers and preparing all items which
are assumed to be done prior to executing an I/0 operation (such as leoading
the contents of BINTAER into a pair of CPU registers), the binary code
tested the flag for @. If it was @, the binary returned immediately (this
was the first pass through timing the loop).

Section 3: Performing I1/0 Operations

If it was not #, the binary performed whatever operation had been coded
into it. The flag was set to the number of bytes to be transferred. If
appropriate, the binary code then transferred that many bytes into or out
of the CPU registers. Usually, none of the data bytes transfered in such
cases came from or returned to the BASIC code variables. TIf Dbytes were
input, they were simply ignored. If bytes were to be output, the binary
simply sent B's for control operations and string output.

For formatted areas (sending to the BCD interface and needing '+' and 'E?
for instance) a string variable was used. The pointers were set up in the
CPU registers regardless of the value of the flag so the time needed for
this was subtracted out.

The only remaining variation in timing between the @-flag run and the "not"
@—-flag run was the value of the flag. Because a system routine used by the
binary was argument dependent, the difference showed up in the loop time
differences. A special binary program that called the system routine ONEB,
used with a series of parameters from © to 168 (the largest flag value
used) gave a set of axecution time differences than that with the parameter
d. These were subtracted from the measured times.

The timing loop went through 1,800 repetitions of each binary call.
Because the accuracy of the BASIC timer and resclution are on the order of
a millisecond, we start with an upper limit on the accuracy of the timing
data of a microsecond. Seyeral- influencing factors lower this accuracy to
some unknown, lesser accuracy. The coincidence of handshaking signal
assertions and tests is probably able to aceount for ten or SO microseconds
of jiggle, but this should average out over a thousand operations.

The main error 1is the argument dependent execution times of number
conversion routines used by the BASIC code in taking the system time. The
results tended to be repeatable to within a few microseconds per operation.
However, with the resolution of the timers being on the order of the times
being measured, no statistics on the variability of the individual
operation times could be taken. The times are given in milliseconds as one
or two digit numbers. They should be taken as good to ten percent or SO if
it really makes a difference in your application. You should test and time
as appropriate to Yyour needs.

For operations that don't invelve any actual data transfer, the times are
1isted. If data transfer is involved, there 1is a base time given which is
what is required for a single-byte transfer and an incremental time which
should be added to the base time for each additional byte transferred.

Section 3: Performing I/0 Operations

3-54

978

980

999
laea
1818
1820
1830
1849
1858
1d6@
1878
1888
1098
1128
1118

1128

128p
1818
1828
l@38
1949
1858

BASIC timing loop:

!Previous code has set C to the select code and

! has set 5 to the protocol command selected.
|

F=@ IFlag is initially set to @
TO=TIME ITime of start through loop

FOR I=1 TO 1080

BINARY F,C,S5 1Call the binary

NEXT I

T1=TIME |Time at end of loop

IF F THEN 1108 {Branch if second time through
T2=T1-TO ! otherwise T2 gets the first time
F=1 1Flag now says second time through
GOTO 1@81a@

T3=T1-8 ! second time to T3

PRINT "Execution time:"; (T3-T2)/1088;" seconds"

The Binary:

1Above code set up and put the flag into R28

TEB R28
JNZ SECOND
RTH 1Just return first time

SECOND !Ensuing code performs operation S at
1 select code C for second time through loop.

Section
Iv

SAMPLE CODE

4.1 Introduction

The binary program in this section illustrates several I1/0 operations. The
register conventions used are:

R20,21 Scratch

R22,23 BINTAR

R24,25 CCR/PSR address

R26,27 OB/1B address

R3@8,31 Character count

R32,33 Buffer pointer

R34 Active? (Boolean P=false)

R35 EOL reguest (Boolean B=false)
R36,37 GOTO/GOSUB pointer

The code assumes that the interface of interest is at select cede 10.
Additional interfaces (notably HP-IB at select code 7) are allowed. All
I/0 ROM keyword usage should occur either before the binary is loaded or
between a RELINQUISH statement and an UNRELINQUISH statement.

4.2 Keywords
The sample program Keywords are:

RELINQUISH
Returns the IRQ28 and IOSP hocoks to the ROM that had them before SELFIO
was lpaded.

UNRELINQUISH
Takes IRQ28 and IOSP back. If alternated with RELINQUISH, interrupt
control can be passed back and forth between the I/0 ROM and the binary

program.

GIVES (string expression)
Sends the string using simple output protocol.

Section 4: Sample Code

TAKES (string expression)
Enters the string using simple input protocel. It won't terminate until
the dimensioned size of the string has been filled. Line feeds are not
specially recognized.

GIVEI (string expression) AFTERWARD GOTO/GOSUB Line#
Sends the string using interrupt output protocol. Equivalent to "ON EOT
180 GOTO/GOSUB Line# TRANSFER (string expression) INTR."

TAKEI (string reference) AFTERWARD GOTO/GOSUB Line$
Enters the string using interrupt input protocol. Equivalent to "ON EOT
14 GOTO/GOSUB Line# TRANSFER 18 TO (string reference) INTR."

ON BREAK GOTO/GOSUB Lineg
Sets up an end-of-line branch that takes place upon receipt of a BREAK
character (for serial interface; for HP-IB, read "ON IFC"; for GPIO,
read "ON ST1"; for BCD, read "ON FUNCTION B MSB"). Equivalent to "ON
INTR 18 GOTO/GOSUB Line$ ENABLE INTR 18; 128."

ACENOWLEDGE BREAK
This is the first statement which should be executed after the ON BREAK
end-of-line branch has taken place. It is egquivalent to "STATUS 1@ ¢
29" where Z9 is ignored.

GIVEB (string expression)
Sends the string using burst output protocol (note that the BCD and GPIO
interfaces have format restrictions for burst I/Q and the serial
interface does not Support burst I/0).

TAKEB (string reference)
Enters the string using burst input protocol. Fills the dimensioned
size for the string.

SHOVE (register number) , (data)
Does CONTROL 16, (register number) ; (data) for times when the I/0 ROM
isn't available.

Section 4: Sample Code

]
o]
)
A0
L s
&l
i
1S
o

a0 FARTAR

110
120
13260
14
150
1 &
170
1 8
130
200
210
220
Z3A0
T
BEO
a0
270
280
2570
[OO
210
S0
330
RN
St
DA
g
SRR
350
400
410
420
4300
4400
450
#4001
470
4830
430
S0
=140
S20

LT

THERRERRRER AR AR R R R LR EELAMPLE
GLO BLOBAL

1

RLNTOE

DLMMY
ASCTAR

St
DEF
DEF
DEF
LEFR
DEF

BYT

DEF

OEF

DEF

DEFE

DEF

DEF

DEE

DEF

DEF

REF

DEF

BEYT)

DEF

DEF

DEF

DEF

DEF

DEF

DER

DEF

DEF

DEF

DER

TEF

DEF

DEF

DEF

DEF

BYT

RTH

ABF

(=a]

ASF

Ask

ASFE

AEE

ASF

ASkE

AEF

[RE=ta

AEF

BYT

SELFIL

RUNTAE
ASCTAE
FARTAR
ERFTHAH

IMIT.
0y
REL IN—
LIMRIEL —
EIVEL—
TRKES-
GIVEI—=
TAEET—
OMBRE-
BIVER-
TAKER=
ALER—
ROV
O, 6
FELLIN.
LINREL .
GIVES.
TAKES.
EIVET .
TAKET .
OhBERE.
GIVEEB.
TAKEER.
ACHR .
SHOW.
DMy
GLiMMY
DLy
DLy
AFTER.
b A S o O

PREL INELUISH"
TUNREL TMEUTSH"
"GIVES"
"TAKES"
"BIVEL"
"THRET"

"N BREAR"
"EIVER"
"TAKER"
YACKNOWLEDGE BREAKY
"SHOVE"

215

T

el et IR ¥ 1)

Pl

[0 BINARY FROGRAR

Section 4: Sample Code

| BYT 215 L

G R BYT 215 Ll 7.

bl) BYT 215 L

-t AEF "AF TERWARD™ 120

@70 BYT 377

o800 ERRTABR BYT 200,200, 200, 200, 200 200 200 200 200

R0 ASF "Interface miss=ing"

L0 ASF "Interface upwel]"

10 ASF "Interface dependent srrpe"

&0 ASE “"Invalid operation”

SHE0 BYT 77

A0 "HEEERFFRAEEN AR R AN NI IS 24T 10N

&S50 ITNIT. EIn

S&0 LOMD R22, =BHIKNTAB

&70 LODED RZ0O,=ROMFL

AHBO CHME RZ20,=5 MLOADEINT (=
&0 JIE ITNIT.. VETE. YES -J
FO0 CMR RZ0.=9 PRUMG ITNIT 7

710 JNE IMIT.+ VI TE MO

F20 LDM R2G,=IMIT. 1 ELLBE CLEAR FOINTERS
T30 abM R20,R22

740 DCM R2Z0

7o0 5Tr R20.R4 PEETO INIT. 1)

Fah INIT.+ RTH
FFEr TNITu. LDF RZ2&,=1IREZ0

el

780 LDED RZO.R2& 'SAVE FOR LATER
T LDM R24.R24 ISAVE OTHER ROMYS TROZO HOOE
=TYTN] LDOM R30, =I0SAVE
BiG ADM R3O, R22
e POMD R40, +R24
B3 FLMD Ra0, +R3E0
8B40 POMD R40,+R2
BaO FLIMD R4, +RE0
8B40 STRD R#,=GINTDS CTAKE HOOKS
870 LDM R71.=232 | {BADY o
=I=Tg STED R#.=GINTDS e = .
890 J5H =ROMISH = 3R7S
PO PUMD R71.+R24 THALF OF IRD2O
910 LDM R70,=1SR 'RELATIVE ADDRESS
R20 BYT O —FRT72
PEO STRD R#,=GINTEM | =3RTE
DA FAD 1—SRTA
P RTIM \—¥R7T
P& LDM RZ24,R70
70 ADM R24,RZ22
QRO STHM R24,R70G TARSOLUTE ADDRESS
S50 PUMD R70, +R2 IREST OF IRRZO
1000 LDM R71.=516 ' (JSR)
1010 DEF ROMJSE L—SRTTE
1020 DEF EOLSY | =574
103G BYT O - sRT&
1040 RTH =R

Segtion 4: Sample Code

1050
1050
1070
1080
LEyR0
1 1o
1110
| Bl
1:1°-3%)
1140
11500
| 5 L
17
11840
1150
1200
1210
1220
230
1240
1250
1240
1270
1280
12580
i S0
210
| TR0
LR
1340
1 2S00
1 E&D
1370
LARRC
| 320
1400
1410
14240
1A=
184540
| 450
1 4ai0
170
1480
1450
1 S
15150
1 G20
15350
1540
1550
15480

LT R28,R74

abm B24 .REZ2

oM B24 . 74

STMD R71,=I105F
STED R#.=G5INTEM
CHMEB R20,=23&6

aOMZ O TMIT.

CLE R20

STBRD R2Z0,X22.8TEST?
ILDE R31.=4

JEE O =ENTRTH

STED R#.=IMNTRSC
DR REL =51

J5B =CNTRTH

LOED R0, MR, BTEST?
dNZT INIT .0

LI RZ20,=5465

STED R20, ¥22, ERROR#
J5HE =ERROR+
HSZ

CME RZ20,.=3
JZR IMIT.1

L DB RP0O,=345
dJEE THIT.E
LM R24.=1355,
STMD RZ24, X232, CCRADE
IEM Ra24

STHMD R4, X322, OBADR

LM R24, =TTEUINT

ADM RZ4.RZE2

CLM BRTO

FlUMD RV, +R24

FLMD RFO, +R2E4

ELMD R70,+R24

LDED B2, =8C_0G

ANM BT, =200

JIR INEF.E

ITNIT R RTM
1##ﬁﬁ*#####&#####**###*####]FDEQ
15k BIM

FLIMD RZ, +RéE

ELMD R4, +R&

DM R4G.R 30

EQL 44

PLMD R40, +Ré

LDM R0, R2EO

FUMD R4O0, +R4&

CHMM R&,=R&LIMZ

JME ISR&A0K

LR RET,=17

J5H =SYSERRE

LB R2G, Ré

INIT.E

ERROR#
INET G

b o J

g

IMIT.1

M+132

15R60K

'RELATIVE

PABSOLUTE

IRONE HODKS

'DID 1 TAKE IT FIRST?
LITE RO
LASSUME MO INTERFACE

IWATT S0 S
'CLESR ALL RST RBITS

VWETT 400 M5

PHTRTERFALE MISSING™

LT -BELETEST OF
VO TNTERFACE LIMWELL!

FINITIALLYE RéM

1EOT AN INTERERCET

INTERRUPT SERVICE RDOUTINE

VSAVE Téa COPU REGISTERS
PMAKING N+12
b ogs DOTAL

LOHECK STACK AVERFLOW

ICHECK FAST INTERRUPTS

4=5

Section 4: Sample Code

1570
1580
1590
1400

1510

1&20
143E0
1 &40
1 &E0
1 &40
L&70
1480
| &5
1700
1710
17720
17380
1780
1750
1 7&0
1780
|7 EO
1790
1800
1EH1 D
1820
18%0
IR e
L B5G
1840
1870
1aa0n
1890
1200
1210
19526
1930
1944
1 9500
1940
127G
1980
199
2000
o0
2020
2O7E0
2040
2O50
2040
2070
2080

4-6

SHM R20,=N+17
LDM R30,=5,0
LDMD R44, R20
MM R4, =IROPAD
JIFE MOVSTE
CHMM R4S, =TRORTN
JN7 R&GEOOD
LDM R30,=2,0
LDM R32,RZ0
ADM R332, RE0
LDR R37.=5
FOMD RI4O., +R32
FLMD Raa, +R20
DB K37
JNZ MOV LF
SHM R4, RT0
LDMD R22, =RIMNTAE
CLi4 R24
nCH R2&
LOBD RZ4&, =INTRSC
STHM R2&4,R24
ICM R24
|LDRD R20, R24
JEY 18R]
LDBED R20,R24
LDED R2O,RZ4
JEV ISED
CLRE R20
STERD R20,R24
L DRD RZO, R24
JZR 18RID
CME R20 =4
JER I8R11
CHMB R20, =1
JEZR IBRET
CHMR RZ0, =&
J7R 1SREOL
CME R20,=377
JZIR ISRIIN
CME R20,=3573
JZR I1SRSTE
CHME R20,=3
JIR ISRSTO
CME R20, =2
JZR ISRR11
J58 =ERROR
BYT 344
JME TSRDOM
LREERAI R AR R SRR RN KR KR ASELF
ISRSTE LDBMD R30, ¥22, CCRADR
CMM R24, RE0
JIR ISRSTO

MOVSTH

MOy LP

R&GOOD

ISRTDE

'FIND RETURN ADDRESS
VABBUME IROPAD
'GET RETURN ADDRESS

'IIF IRRPGD
VIEE NOT IRBRTH
'ELSE ADJUST DISTANDE

Yo DEC BYTES
'"MOVE THER

WTILL MOVE

PADJLST STACE FOINTER

@

'EET INTERRUPTIMG COR ADDRESS

'RZA-2EER/PSRA
'RE&6-FORAIB

THWATT THF=1

MEaY HELLD 7O top

TRGAHTM [BEF=1
VASSURE THAT CED=G
'GET INTERRUFT REASON
VINTERRURT (U7
VINTERRUFPT TN

VEURST TERMINAT 1OM .8
'ELL SEQUENCE SENT
VINVALTID 14D

' SELF

TEST ERROR

YBELE TEST 4K

'REGISTER & INTERRUET
' INTERFACDE DEPENDENT ERFOR"

TEST ERROR
MY INTERFACE™

IR ¥ES

Section 4: Sample Code

ZOT0 IMPE [SRIDE

TAO0 PEERKEEREERAEEASRAN KKK AR RRASELF TEST Ok

1160 I8RSTO LMD HEG,KEZ.EEHQDH My SELECT CODE?
B0 CrM R24 . R30

2130 INZ ISRSTP VIIF ND

2140 STED RZ20, K2R, STEST?

7150 ISRSETF LDE K21 ,R24 LOG IN THIS SELECT CODE
2180 LRE RZ1

2170 ANM RZ1,=7

2180 LDE R20,=1

MMFO ISRLOG DCB R21

H200 JCY ISRLO+

7210 LILE R20

DG JMP ISRLOG

P20 ISRIL.O+ LDED RZ1,=SCLOG

2240 ORB R21,R20

2750 STED R21,=8CL0OG

2040 ISRDON JMFP ISERTIL

2270 ISRIIA JER =ERROR

22R0 BYT H&3 PHMINVAETD OPERA&TIONY
2290 JHP ISREDOM

ZEO JSRIO JmME: ISRIO.

2TI0 IBRIT JMF ISRII.

2E20 ISRET JIMF TISRET.

DTTO D AKKAKEKREREERRAAFAARAARE KKK KEOL SEOUENCE SENT
2E40 TSREOL LDED RO, X22,0ACTUVD | BRANCH SET WP
PES0 JIR ISERDOM VIIF MO

2540 LD EZ0, =0 FTF

FITO STMD R20. 122, 0aCTY? 'FLAG ENL

2380 LDEEOL
23RO LOGEDR

JEH %22, SETEOL
JHF TSRDON

'RERUEST EOL SERVICE

SO0 P ERKKEFARRANKARAR IR M EKFAFFIREGLISTER ONE INTERRUPT
2410 1SRER1T L.DED RZ0, Y22, CACTY™ THRANCH SET UP?
PATE J7R TSRO0 "ITF WD

BAZO LDM R2G,=0,377

T30 STMD R20, X322, CacTy? IFLAG EOL

b Sl JMP |LDGEDL

CALD TEFKEEEEEENREARRALAEAARKIAXBURST TERMINATLON
2470 TERET . LDGM R20,.RS& LBET STHER

TAR0 SEM RZ20,=N+17 LEIND RETURMN ADDRESS
2490 LDM RZ4,=BYSRTN 'GET RTH TO RTM
TEO STHMD R24,R20 'DECE THE STACK
PE10 ISRERTI JMP ISRRTZ

?E70 15RI0. JMF ISRIOH

OETG AR R R R R AR RN RN AR RATRANSFER 1N

2540 ISRIL. LDMD R4G, X722, ICOUNT 'GET POINTERS
RESG STM R40, R0

o540 [SRITI LDEI R20,X22.0CRADR '\READ FPSH

2570 JEM IGRIIL FRWALT IBF=1
=580 ISRIIZ DRI RZ21, X22,0BADR IGET DATAH

2ES0 FURD RZ1,+R32 ISTORE IT

LU DCM R3O 'DROF CRUNT

4-7

Section 4: Sample Code

&L LRE R20

BEP0 LRE HZO

A3 JOD ISRIIA

ZHA40 TSM R3O

2AED JPR ISRIT4

DEAD STRI R#.X22,0BADR
2570 1SRI1X LERI R20, 122, ECRADR
PHEAD JOD ISRIIZ

DG LLE R2O

2700 JNG ISRI1®

2710 JHF ISRTII&

IF20 1SRIT4 LDE R20, =1

27I0 STERY RZO, X272, CCRADA
2740 ISRIIS LEBET R20, X222, CECRADR
2750 LRE R20

ATERO JOD I8R1IS

2770 CLBE RZ0O

DFRD STBI R20. %22, CERADR
e l= Ty CLM REd

TEH DCH R3S

PRI d5E X222, SETENL

PEZO ISRITA LM R4C, REG

RO STHMD R40, 122, ICOUNT
SB40 ISRRTZ JHF TERRTHN

YWIIFE RPED=1

SITE B0UNT USED up
VEREDUEST MORE)
'READ F5R

'NEXT OME*S READY

Y3IF TRLE=1
TELBE QUTT FOR MO

'RET EED=)

PAWATT BUSY=G

FSET. CED=GD

'"TRANSFER NOT ACTIVE"
!"NEED EOL SERVICE"
IREEUEST EOL SERWICE
VRUT AlayY POINTERS

CEIC IEERARREEREARE BB AAR R AR AR AR TRANSFER OUT

2E&0 TRRTO+ LDFT R0, K27 000
B 7O 5TH R40,REO
2etea ISRI0N FOBD R20, +R32

PHIO DCEM REO

DTG JLEY 1I8RIOZ

DRI LDH Ry =4

BTN STRI RZ1 27, CERADR

2930 ISRIDZ STRI R20. %22, 0BADR
2940 ISRIOG LDHI ROG, 322, CCRADR

FOS0 DR RRELK KK KKK F R AR AR KK RRREND-OF =L INE BRANCH SERVICE ROUT INE

PRE JNG [SRTOT

D9AD LLE R20

PIT0 JHE ISR

PRED LOM R4, K30

Ty S5TMD R40, X222, D00OUNT
TO00 ISRRTM FOMD R4G, —Ré
T STF R, B2

Z0OZ0 FOMD R4a, —Ré&
FOEC STH R4, R30

00 FOMD R40, —FRé
EOS FOMD K2, —R&

2040 STED RZ.=INTRS5C
FOFG BT

2090 EOLSY BIN

FIO0 HTED F#.,=6INTDS
F110 LDMD RZZ,=RINTAH
Z120 CHMB R1é&,=7

4-8

'FETCEH FEINTERS
VEBEIF NEXT BYTE
'DREF COUNT

VIIF WOT LAST
'ELLBE BET LCED=1

'WRITE DATA BYTE
READ FSRE
VARMATT ORF=0

PMORE- IR TRLG=1
TELRE FUT akayY FOINTERS

'RESTORE CPL REGISTERS

'REVIVE TGS

OME AT A TIME!

@

Section 4: Sample Code

F130
2140
F150
F1H0
3170
2180
3190
E200
2210
J2E0
RE230
e
3250
2260
3270
F280
F250
E300
RO
A320
BES0
AR40
2350
I340
FI70)
2380
Rast=ly
A0
410
2420
F430
440
50
S4&O

| Z470

4810
S50
IEOO
3510
A UL,
S5E0
o0
550
ATAO
E3m AR
ikt 1
IS50
EAO0
IsH10
ShHE0
I&E0
Féad40

MAGIC

CHDHIT

EQLSV1

ERLEVE

EOL V3
EOL VS

ENLEVE

JIR EOLSVE

CMB R16,=2

JZR EOLSV1

LDM RZ0, Ré

SEM R20,=11,0
LDM R4bH,=CLEHIT
ANM R3Z,=374,377
TSR R32

INZ CNDHIT

LDM Ra4&,=CHREDT
LDED R4S, =SVCWRD
JOD CDNRHIT

LDM R4&,=ACBITS
STMD Ré4&,R20

LDE R37.F17

LLE R37

LLE R34

LLE R37

LLE RIE7

DRF R32

STRD R#,=BINMTEN
RTH

CHMMD R10, =FCR
JNZ MAGIC

LDED R7S, ¥22. SRVEDL
JZR EOLSV4

ELE R7S

STED R7S, $22, SRVEQ
| DR R37,R17

ANM R37,=10

JIR EOLSVR

ISR =ROMISH

DEF TRA®

RYT

JHP EDLSUS

JBE X272, EOLWHO
JIR EOLSVZE

CLE R75

PLUBLD: RS, +RFES
DR R7S

STED R7S, X272, SRVEOL
FOMD RS&, +R7A
JSE =8ETTRI1

STHMD R10G, =0ONFLAG
LDM R10.RS54

LDB Rlé&,=7

JME EDLSYS

JSH X727, EOLWHO
N7 EOLSVA

LDE RI2, =375
J5H =CLREEIT

JMP EOLSVT

' TF RUNNING
'8YSTEM REGQUIRED
b INTERACTION

LITF MOT AT EMD OF BASIC LINE

PIIF MONE FENDING
'ELLSE, UNFENMD IT

'ITF NOT TRACE MODE

ANY. REQUESTS™
|\ TIF MO
\CLEAR THE FELUEST

'SET FENDING
'GET STOREDR RI1O
' (FOR TRACIMGI

'SAVE CURRENT BABIC PO

LN RASIC BRANCH
'BLERT BYSTEM

LTIF MORE TAKERS
V'ELSE CLEAR BITS

Section 4: Sample Code

I&50 EOLSVSE
LA
SATO
&80
ZEAESN
JI700
3710 EDLBVT
TT20
I7E0D
3740 EOLSYE
AFE0 EOLWHO
2750
IFT0
=780
TP
2800
A= BN
TEZO
FET
ZE40
IS0
JBEA0O EOLHIM
=g70

4-10

LD# RAS, =7
LDED R&4, =SVCHRD
ORE R&4, RaS
STED R&4, =SVCHRD
LDE R&d, =20

DRE R17,R&4

LDED R20:=1FPHERE
JINZ EDLSVE

STRI) F#.=GINTEN
RTH

LDH R7é,=IE01 Fi
ADM R7&.R22

LDHED R75,R7&

JHE EOLHIM

LDM RT74,=0FE0OLFL
ADM R7&6,R2Z
LDBD R75,R7&

INZ EOLHIM

1D R7 &, =CEOLFL
ADM R74,R22
LDBD R7S, R74
RTH

LK EXAMPLES?2

LASSIURE ANOTHER 10SF Calt

'DONT T RE-ENARLE INTERRUPTS
' IF IPRIN IS HERE

Y3TF EOQT kN

LWHIE EOT OUT

FRREMSE

Section 4: Sample Code

1 THERKRRARIFIRIRE RN F A R AR KL LR RPARSE CODE

2er RELTN=
30 LUNREL —
40 BCHER-
=

&0

70

=20

T BIVES—
106 GIVER-
110

12

130 PARFL
140

150

1&HO

17 TREES—
180 TAkKER—
190

200

210

:Eﬂ FARERRE
et e o]

ok

mall GINETL-
el

R

s {0

220 TAkETD—
SO0

10

)

ERO GFTER-
SR

Z50

T

=70

SR

A8

A0y CildFRE -
Y]

420

430

A

G50

4 &0

d7

480

430 SHIV =
500

i

S260 SHOV—E
S50

BSZ O

BSZI 0
LDR R77.R43
LDR R75,=371
FUMD R7S,+R12
JEB =50aAN
RTH

BEZ O

FUBD R43. +Ré
JSE =STREX+
JEZ PARERR
FOBD R77.-Ra
LDR R75,=371
FUMD R75,+R12
RTN

BSZ 0

FUED F43. #RbE
JBH =sCAM
JSH =STRREF
JEM FARPL
PORD R43,-Ré&
JEE =ERRUR+
BYT 92D

FURD R4Z, +Ré
J5H =5TREX+
JEZ PARERR
JMP. BETER—
FPURD R47, +R&
JSH =8CAN
JSEH =STRREF
JEZ FARERR
CME RL4, =571
INZ PARERR
CHME RA43,=20
JNZ FAREFRF
FOED R77,—Ré
LDE R75,=371
PUMD: R7S,+R12
FURD [435. +Ré
JSH =SCan
CMEB R47,=210
JHT FARERR
POED R77.=Ré&
LDE; R7S.=371
PUMD R7S,+R12
JSE =BOTOSU
RTHN

PURD R4T, +Ré&
JSE =GETZN
JEN SHOV-1
FOED R43,-R&
JEE =ERRDR+

PETHFLE BTATEMENTS

'STRINMG EXFRESSTON

'STRING REFERENCE

FIEFEND "AF TERWARD "

PRUSEH “EIVETY OR YTaAKET
'SAVE "OMEREAK'" DR "AFTERWARD®

POEREND BOTOS0E0E

PRUSH "OMBREAK! OR "BAFETERWARD"M
LEYSTEM HANDILEE GOTODSGOSUR

'GET REGISTER NUMBER & DATA

4-11

Section 4: Sample Code

540 BYT 89D

S50 5HOY—-1 FOBED R4S, -R12 CIFOR BETZM)

S60 FORD RS7. -Ré '

570 LDR RES, =37}

S80 FUMD RES,+R12

bt 8| RTH

Lo

a10 !

&0, |

€30 !

G40 |

LT

fab !

HTD ! _
&30 BYT O, 201 ' TO DECODMPILE “AF TERWARD®
&R0 AFTER. RTN

FOO VEXEARERRRE RSB RRRRF R KRR EREL L NOUTSH GD
710 BYT €,241

720 RELTH. BTN

730 LDMD R22,=RINTAR _

740 LM R20, =EOSAVE 'GET OREGIONAL HOOK
TE(ADF R2O.RZ2Z

TE0 FOMD R4, +B

770 CHMB R40,=234

TEO JNT RELTNL PATF THERE WS OME
750 J5E =ERROM+

200 EYT 342 VORI ROE

#10 REL N1 LbM RZ4,=IROCZC

220 FURD: RO, +R24

830 POMD {40, R0

B4} 0 FUMD R4, +R24

= hara] FOMD R4S, +R20 PoTOER, ALSO

B0 STMD. K45, =ESHDK

@70 RTH

SEC DREEERRRRRRE AR R R R R R R R F R ALINREL L NAL T SH

40 BYT (.24)
SO0 INREL . Fe o

S16 LDMD R22, =RiNTHE

LI LM RZG, =10S4VE 'RE-SAVE OTHEER HOO
Fhdal ADM R20,RE2

T LDM R24,=IRD20

250 FOMD RAC, +R24

G0 FLIMD R0, +R20

S0 FOMD: Rador, #3248

SEO FUMDY R, +HR20

EET LDME R4S, =ESHUDE

| G FUMD R4S, +R20

1OL0 nem REg

L Q20 LD R4, =15k | REMAKE MINE

LO30 BYT 0

LCHger STRD R, =GINTEH

1050 FAD

4-12

Section 4: Sample Code

10&G RTHM

1070 LDM RZ0, KR40

1080 AlDM R20, R22

1 o STHM R2, RGO

1160 FUMD R40,—-R24

LY e LDM R4l ,=232

1120 STBE R#.=GINTDS
1130 JdE5RE =ROMISE

1140 PUMD R41,-R74

[L5 LDM RZO.=EQLSY
11460 ADF RZO0,REZ

1170 STH RZ0,R43

1184 EL: RgG7

1150 STHE R45.=ESHOO
12000 TR

1210 333 A2 A2 a2 kXXX RLTVE
1220 BYT 0,241

1250 GINVES. BIn

1240 LDMD R22,=BRINTAE
1250 FOMD R32.,-R12

1240 POMD R3O, -R1E2

1240 JIZR GIMVESRE

1280 LMD R24,X22,CCRADR
1290 LDMD R2&,%232, OHADR
1300 LDE RZ0, =240

1310 JBE XEE. CHMDHS

1320 BIVES] LERD RZ1.RZ4

133560 JhE EIVEST

1340 CLB R2Z1

L350 STRD R21 R4

1340 GIVERZE
1370 BIVERS

FPOBRD RZ0, +R32
LOED RZ1,R24

1380 JNE BIVESS
1320 DM R3O

1400 JZR BIVES4
1410 STBD R20, R2é&
1420 JHMP EIVESZ
1430 GIVESYH LDE R21,=4
1440 STBED R21,RZ2
1450 STED RZO.RZ5
1440 GIVESS LDED RZ21.R24
1470 ANM R, =202
1480 JNE GIVESS

1470 GIVESR RTM

1SG0 VR EREEEKRN SRS KK RF AR RARFARATOKE
1510 BYT 0,241

1520 TAKES. RIN

1530 LDMD R22, =BINTAR

1540 JSB X22,8ETHETHE

1550 TEM R3O0

1540 JIR TAKESR

1570 LDMD R24, ¥22.CCRADR

PARBOLUTE ARDRESS

bRk, ETC.)

'RE=TARKE TOSP

SIHPLE

'ADDRESS
'LEMETH

T gUTRUT. SIMPLE"

LAWARTT OBF=0

'CLEAR CCR
'GET NMEAZT BYTE

LAWATIT ORF=0
'JIE LaST BYTE

WRTTE OR

ICED<—1
IWRITE LAST BYTE

TAWALT OBRF=BUSY=0

SIMFLE

'ARRANGE DATA SINE

'JIF NOD BYTES

4-13

Section 4:

1580
1550
1 &0
15610
1520
1430
1 &40
14650
1 &
1670
1580
1&F0
150y
17140

1720

L7S0
1740
1750
1740
776
1780
1794
1800
1810
1820
18350
1840
1850
1840
| 270
1880
| J90C
1700
1910
TR20
1730
154400
1 FS0
1950
1570
15980
1 5
TENE
2010
2020
OE0
2040
PN =i
et
2070
20840
2090

4-14

THaKESO

TERER]

TARESD

TAKESS

TAKESH

Sample Code

LDHMD R24, X222, OBADR
LDE R2G,=20
JER X22.,CHMDHS
LBRED RZ20,R24
JNG TAKESOD
CLE R20

STRE RZ20,.R74
LDEDR RZ1.R#4
JEVY TAKES]
LOBED R2G.R245
FURD R20, +R32
ANM RZ1,=4
JMZ TAKESZ
DCM R3O

JER: TAKESE
HSTRDR RED.R28
JHMF TAKES1
LDbE R240,=4
STED RI0,RZ4
LDED R21,R24
Al R2] =208
JINZ TAKEESS

RTN

PREERF R E R AR A R R R R R R IVE

BIVEI.

BIVET]

GIVEIZ

GIVEIR

BYT 0,241

BIM

LDMD REZ.=BINTAHE
LDBD R20, %22, DACTYS
dmMZI GIVEIL

LDMD R24, 22, CCRADR
LDMD REL, 2282, DHADR
FOaMD R3Z2,—-R12

FIOMD B30,.—-R1Z

JIR GIVELR

LD R34 . =377.0

GoM RIO.=3,0

5TM R10,R34

ADrM R1G,=3,0

LDM Ra0,RE0

STHD R4C, X322, 0COLMT
LOE R0, =247

J5R $Z7.CMDHS

LDED R20, R24

ING GIVEIR

CLE RZO

STRD R20,R24

ISR #2020 INTCHE

RThi

EREEERER AR KRR AR KA R R R TARE

TAKET.

BYT 0,241
BTk
LDMD RZZ.=RINTAE

PNEREUT, BIMPLE"

AWATT ORF=0
' CEDY ~0
CAWATT IBF=1
'READ DATA
'STORE IT
\JIF FED=1
CDROF COUMT

FITFE MO HORE ROGH
VHERLEST HMORE

LEED«—1

'AWATIT OEF=BUSY=0

TMTERRUFT

"1 AT a TIHE

VALDDRESS

FLERMETH

VACTIVE ‘BUT NO EDT
PETEF FAET "AFTERMARD!
FROINTER TO GOTO/GOSUER
'SETER FAST GRTOSGOSUR
'STORE FOINTERS

FROUTRUT, INTERRUPT

TaWaIT OBF=0

'EERG~0
'MORMALEZE T0OF

TN TERRLIFT

C)

Section 4: Sample Code

2100 TAKETI LDED R20O,X22, TACTWV? LONE AT & TIME
2110 JHZ TAKEILI1
2120 LDMD R24, X222, CCRADR
2130 LDMD RZ4, 22, DRADR
2140 JS5H ¥22,8ETSTR 'ARRANGE DATA S1NK
2150 TEM R3O ' ILENGTH)
2140 JIR TRKEIR
2170 LDM R34,=377.0 'ACTIVE BUT NO EDT
2180 ADM R1G, =3,0 'ETEF PAST "AFTERWARD™
2150 STH R1U.R36 'FOINTER TO BOTO/GOSUR
2200 ADM RIG.=3,0 'BTEF PAST BOTO/GOSUE
2210 LDM R4, REO 'STORE FOINTERS
2E20 STMD R40, X2Z, TCOUNT
2230 JBHE 422, SNDONT 'BYTE COUNT TO 1OP
2240 LDE R20,=22 PWINFUT, TNTERRUFTY

o 2250 JSR X22,CMDHS

2 22560 TAKEIZ LDBD RZO,R24
R270 JNG TAKETZ 'AWATT ORF=0)
2280 CLE R20
2290 STHD R20,R24 'CERG =0
2EO0 JSH X2Z, TNTIHKE 'REVIVE CARD

2310 TAKETR ATN _
FRR0 DERERREAARAREFRRRAFRERRA KRG IVE BURST

2330 BYT 0,241

2340 BIVER. EHINM

IS0 LOMEO RZZ, =RINTAR

PERAD LMD R24, X222, CCRADR

2370 LDMD R2&, X272, OBADR

2380 BIVERI LDBD RZO.X22,0ACTV? OINE AT & TIME
2390 JM7 GIVERL

SAO0 FOMD R3Z2, -R17 EDDRESS

410 FOMD RI20, =R1Z LENEBTH

2420 JiR GIVEERR

PAEO JSE X232, 8BNDCHT 'BYTE BOUNT TO I0P
280 JSH XZZ, INTOFF 'DISABLE ALL IMTERRUFPTERS
450 ISR 22, INTCHE |RE-ENGELE MY 1DF
24460 HIVERD LDED R20, R24

DETFO JNG BIVERT TAWATT ORF=LU

2480 LDE R20,=2

hedrs K= STED RZ20, R34 MEOM< =1

SO0 LDE RZ0, =42 LMBUTRUT . BLRST®
2510 STROD R20,R2A

PE20 GIVERST LDRD R21.R2

2530 ANM R21,=20u2

2540 INZ BIVERS LAWATT OFF=BUSY=0
2550 STED RZ1.R24 YEOR<—0

2560 LDMD R&s, %22, DBADR

PSTO STMI Ré&bd.=TEMP2 VINDIRECT ADDRESS
2ER0 DRFP R4

2590 JSHE X22.BOUTLF "GO TO TIGHT LOOP
T&O0 JSE K22, INTON 'ALL DONE!

2410 BIVEERR RTN

4-15

Section 4: Sample Code

2420 !*****##****ﬂ*#i*#*#i!##**ﬂTﬁHE BHURST

2430 BYT O.2241

2640 TAKEHR. BIN

PEE0 LDMD R2ZZ, =RINTAGE

2550 LDMD R24, X22, CCRADR

2HTO LDMD R2&, 122, DORGDR

2580 TAKERL LDED RZ0, %22, IACTY? 1 OAT & TIME

LEHF0 JNT TAKEHR1

2700 JER X2Z2,5ETSTR 'ARRANGE DaTa S

2710 TSM R3O0 PALENGTH)

2720 JIR TAKFBR

2730 JEBE X222, BMDCMT 'BYTE COUNT TG 10F

2740 JESR K22, INTOFE 'DISARLE AlLp ILNTERRLIFTERS
2750 JEH X22, INTEOHE 'REVIVE MY ILop

eran TAKERZ LDBD RZ0, R4

2770 JNG TAKERY YAWGRTIT ORF=0 -
2TEG LDR R20,=2 ~)
270 STED RZ20,R24 TEOME -1

2B00 LDB R20,=45 PUINPUT, BURST®

2810 STRD R2O.R24

FEI2O TAKEERX LODED RZ1.R24

2830 AlM: R21, =242

2840 JINZ TAKEERS 'ANATT OEF=HLSY=n

285i) STHD R21 «R2a 'CCRw =0

2840 LDMD R&&, ¥27, OBADR INDIRECT POINTER

2870 STHMD Rés, =TEMF2

2880 DREF R4

2890 JER K22, HINLOF FTIBHT LOog

200 JEBER XZI, INTON PALL DOME

2910 TAKERR RTH
2920 I***#*$i111*$#$*$*#*mﬁ#$*$$TIEH1 LOOFs

293F0 0

29a0 0

25950 !

2FHE0 .
2D o ::
2980

2&ta0

mOCHG

0

FHZ20 BOUTLE ARF REZ ! TJSE X222 EATS ARE)
FO30 BOUTL FORD R#.+R# 'MEXT BYTE FROM BUFFER
RN E Y STH]I R#,=TEMF? YON TO I0F

S0S0 ' ERAXXAHALTED HERE R kR 244 ¥k %

I0&0 JMF EBOETL

Ia70 !

0840)

090 |

b e

B i

F120 BINLOFP AR R3Z ! (BB X272 EATS ARE)
S0 STEI R#,=TEMFZ 'TRIGGER TO OR

4-16

@&

Section 4: Sample Code

F140
SIS0
F140
3170
3180
F19a
R0
3210
SNl
AT
240
R i 1
S2H0
J270
Safa
3250
2300
3310
S5A0
SI330
S50
Soaaly
NPT 1]
370
Z380
A3T0
400
24140
2430
SA30
B
s bt
2450
S470
2480
3490
AT
3510
RS
F530
A4
2550
I0A0
J5T0
A580
2570

IH00
3410
AHE0
2530
440
E630

BINLF+

PEXERRAHALTED HEREX X XA XXXk ¥

LDBRI R#,=TEWFZ

FLUED R#.+R#
JHME BINLF+

'MEXT BYTE FROM I0QF

' TO HUFFER

PEAKXERENNER R TR AR FF I LXK INTERRUFTERS OFF

INTIEF

FEYDIS

OTHRDS

INTOF1

INTOFEZ2

LDE. RZQ,=2

STED R2Z0,=EEYDIS
DAaD 177402

LDB R20,=1

STED RZ0O, =0THRDS
DAL 177412

LEOE R20,=101
STED RZ0,=0THRDS
LBR RZO,=201
STRD RZ0, =O0THRDS
LDR RZ0,=301
STED RZ0,=0THRDS
LODE R20.=10
LDED RZ21,.=SCL0G
LM R24,=120,377
LBM R2&;=121,377
Ts5R H2Y

JEV INTOFZ

PUMD R20,+R&
LDE R24,=40

J58 X222, CHEDHS
FOMD R20,-R&

LLRE RZ1

ADM R24,=2,0

ADNM R2&, =200

DER RZ2a

JNE O TMTOF

LMD R24, K22, CERAGDR
LDME R2&, 2252, OBADR

RTHN

HEYBDARD

'TIMERS

'EACH SELECT CODE

YBEE LER
IBE'F OE

'MOT RESIDENT

| "TURN OFF '™

YMEXT SELECT CEODE

PEFERREAEAEEREEEREFHARE AR RN [NTERRUPTERS N

IMTOM

TNTOMY

INTOMEZ

LDE RZ0O,=10
LDED RZ1,=S5CLOG
LDM R24,=120.377
LDM R2&,=121,377
TS8R R21

JEV INTONZ

FlMD R20, +Ré&

JSE X22, TNTCHE
LDM R74,R24
FOMD R20, —Ré

LRE R21

ADF R28,=2.0
ADM R2&,=2,0
DER R20

JNZ INTONI

ETH R74.R24

'EACH SELECT CODE

=1

s
LSE

CCR
OB

R

'WOT RESIDENT

'REVIME: TOF

'FOR OBF,BUEY CHECK LATER

TNEXT SELECT CODE

4-17

Section 4: Sample Code

S&&0 INTONZ LEBD RZ1.R2

L7 ANM R21, =202

&80 JNZ INTONZ

3690 LDE R20,=1

=700 STED R20.=KEYDIS
3710 LDR R20.=2

3720 STED RZ0,=0THRDS
3730 LDE R20,=102

3740 STED R20,=0THRDS
750 LDE R20,=203

3760 STED RZ0,=0THRDS
FPFG LDE R2, =302

2780 STRD RZ0.=0THRDS
3790 LDMD R24, %22, CORADE
2800 LDMD R24, 322, ORADR
IBLO RTH

TRAMATT OBF=BUSY=0
'EEYBOARD

'TIMERS

FE20 IKFEREAEXREFRRKERAAE KA KRR HAREYV IVE INTERRUFTED I0DF

3830 INTCHK LDBD R21,R24

ZE40 AMM R21.=10
S8E0 JNZ O IMTEHL
ZR&0 T

F8T0 O INTEHL LR Ry, =1
a8 STED RZO,HZ4G
Z890 JEBE ZZE DUMMY
AR00 CLR R20

S0 STED RZO,RZ4
520 INTCHZ LDBD R21,RZ24
IFZO Al RZL =10
940 JNZ INTCHZ
XPED FTI

YRTH IF FPACK=H

FINT <=1
IWARSTE TIME

VINFE =6

SRH0 TREREENAXNEXEAEERIARRR A ERCOMHAND TO 0P ROUT INE

APTD CMDHS TSE RZ20

S580 JLE TNTHS
IPP0 LDED R21,R24
Qi ANM R21 =410
4010 JZR CHMOHSG
drr?i CHE R20.=20
JAOED JEIR CMOHS2
40140 CME RZ0, =242
GOS0 JEZR IMTHS
A4N& CMEB R20,=2%1
f4O70 JZR INTHS
080 CHMDHSO CHME R20,=205
400 JIR INTHS
4160 CMB R20r, =254
411 JEIR INTHS
d120 CHME RZ0,=111
41F0 JZR THNTHS
{4140 CHME RZ20O,=110
4150 JZR 1WTHS
4140 CMBE R2ZO,=103
{170 JEY CMOHS1

4-18

LOE CSTATHS

\ATF NOT FULL DURLEX
\I1F XFER IN

LITE XFER OUT

{JTF WRITE TERMS

'\ JIF SERVICE REQUEST
'ITF ASSERT
' JTF RESUME
\TIF HRLT *

\JIF > SET REM=0

IOF

L)

Section 4: Sample Code

4180 CHME RZ0, =86

3190 JEY INTHS IITF * DISABLE INTERRUPTS
4200 CMBHS1 LOBD R21.RE4

47210 AlM R21 =202

226 JNT7 CHMDHS] VGRS TT NRFEBUSY=0
420 CHOHS2 OB R21.=2 tEOM< -1

AZ40 STHD RZ1.:R24

42500 STED RZ0,RZ6 VR —COMMANT

4240 RTH
4270 IMTHS LOR RZ1,=1

42a0 STRD RZ1.=BINTDS

G250 STERD: R721,Ri4 LINTE—1

4700 THTHEL LDED RZ1,R24
4210 GhM RZ1.=10

4320 JZR INTHS1 LaWATT PaCk=1
AEED STED RZ1.=GINTEM
4540 ETEHD RZO,RZ6 TWRITE COMMAMD
4350 LI7ED R20, RE& 'READ LB

440 LDE RZ0, =2

AZTO STRD RZ0O,RZY PCOMS =1, INT<-G
4380 T
ASO0 KRR FRARERERAEREARRKXRSKHALSET UP DATA BUFFER
4400 SETSTR FOMD Réd., —R1Z2 tENDRESS

AA10 POMD Res.—F12 LENBTH
4420 FOMD R&s,—R1EZ 'BASE ADDRESS
4430 J58 =FETEVA RET TRUWE FOINTER
4440 FOMD Ré&d.+R54 CTOT & MAX LEN™S
4450 FLIMD Rba, +R34 FAET <— MAX
AAAT STH Réb. R3O0 IR3I0 c— BYTE [COUNT
J470) LD REZ,RE4 | RE2< —RUFFER ADDRESS
44860 RTH
4400 L REERAERKAEEXERRNERF XX EFRRXSEND BYTE COUNT TO 1OP
AFE00 SMNDENT LOB RE0,=231 VOWETTE TERMEY
4510 JER X2 ERDHS

570 SNDCML LODBD RZ1.R24

A530 JRG SROTMN T TaWwalT DEF=0

AE L0 CLE RZ0D

4550 STED R20,R24 | CEDM =0

GE&AD STED RTE0.RZ2S I SEND COUNMT LSB
AS70 BMNDCNZ LDED RZ0,R24

AEEC JnG SNDONZ FEWETT DEREF=O0

4550 STRD R31.RZ ISEND EQUNT MSBE
ALO0 BNDCME LDED RZ0O,RZ4

44510 ANG SHNDECRHS LEWETT DEF=O

44820 RTM

4470 D RERAERKE KRR R R 25RO BREAK GOTO/ BOSUE
446480 BYT 0,241

44550 OREBEREK. BIM

a44a0 LOMD R2ZZ.=BINTAB

LT LDMD RZ4,. %22, CCRADR

44580 LDMD R26,X22,0BADR

ALF0 STM R10.RG8 IPOINTER TO GOTOR/EOSUE

4-19

Section 4: Sample Code

47000
4710
4730
4730
4740
/730
4740
4770
4750
4790
4R00
4810
4820
4870
48240
4850
4840
4870
4880
4390
459010
4910
{4320
4570
4540
45950
AILH0
4970
4980
45990
SO0
b
Snz20
S03E0
S040
S050
bl BT
S0
SO0
S050
2100
110
9120
5130
5140
S150
51480
S170
5180
5190
2200

5210

4-208

OMERKL

ONERIZ2

ADM R10,=3,0
LDE Ra4,=377

LDE R4S, =0

STMD R44, X22, CACTY?
LDR R20, =201

ISE X272, CHDHS

LDED R21, k24

JNG ONERK

LDE R21,=4

STRI RZ1,R724

LDE RZ1, =200

STRD RZ1,R24

LDED R21.R24

ANM R21,=2072

INZ ONERK2

JSE X22, INTCHE

RTH

'STEF FPAST GOTOD/GOSUR
'CONDITION ACTIVE

'ARMED ,

BUT NO TRIGGER YET

'STORE THE SETUP
'WRITE CONTROL REG #1

PAWATT ORF=0

| CED<— |
VEREAK

INTERRLIFT

' ENABLE MASK

AWATT ORF=BUSY=0

'MORMAL

IZE 1P

PAR AR LR AR AR L RN R AR AR ARSI TELL SYSTEM TO CALL 10SFP HOOK

SETEDOL

STED R#,=BINTDS

LDE RZO,=2

LDBD RZ21.=SVCWRD
ORE R21,R20

STED R21,=5V0WRD
LDR k21, =20

ORB R17,R21

STED R#,=GINTEN

RTH

'RERUEST END OF LINE BRANCH

’*#**#**********#**#!!*##**HERNUNLEDGE HREAE

ACHR.

HCHER. 1

ACEBR, 2

ACBR .S

BYT G,241

BN

LEBMD RZ2.=BINTAR
LDMD R24, X272, CCRADR
LDMD RZ&, X232, ORADR
LDE R20, =1

JER %22, CMDHS
LDBD R2i,R?4

JNG ACER. 1

CLE R21

STRD RZ1,R24
LDBD RZ21.R2

JEV ACBER. 7

LDBD R21,R24

LDE RZ1,=4

STED RZ1,R24
LDBD R21,R24

ANM R21,=202

INZ ACBR.3

JSE X272, INTCHE
BTH

ERSTATUS (RER 13

PAWAIT OBRF=0

V'ECRL—0

PEWATT

ITEF=1

'READ REG 1

MZED#—1

FAWARLT OBF=BUSY=0

'REVMIVE

TEEXRERREE AR RN R R R R AR R SHOVE

SHOW.

BYT G,241
JEB =TWODHE

LEaF

'RO&<-REG#: R446<-DATA

nER0

5230

5240

S250

S

E270

SRR

S2P0

5300

mEl0 8HOW, 1

5320

SRR

e Y

cham

SEAH0. SHOW P
G SETH

i S

SES0

A

Section 4: Sample Code

BIN

LDMD R22, =BINTAE
LDMD R24, Xx22, CCRADR
LDMD R2&, X22, OBADR

LDE R20, =200
LDE R21,RS6
ANM R21,=37
ORE RZ0,Ro]

ISR X722, CMDHS

JNG SHOY, 1
LEE R21,=4
STHED R21,R24
STED Ré4&,Rid
LDED R21,R24

AN
Nz
RTH
LK

R21, =202
SHOV, 2

EXAMPLEST

'"WRITE CONTROL "
'REGISTER #

PAWATT OBF = o

'EEDG=]L
YOl —DATH

CAWATT ORE=BLSY=0

Section 4: Sample Code

10 !!**$***#**#**$#*##**##1#*&&##ElHﬁHF FRUGHRAM™S DATA ARER
200 I0SAVE BREZ 23 OTHER ROM® S HODK STORAGE

20 CCRADR RE7 2 MY 10P° S CCR/PSR ADDRESS

40 OBRADER BSZ = ‘MY 10FP°5 0B/IR ADDRESS

500 TCOUNT BSZ 2 'THFUT CHARACTER COUNTER

&0 IPOINT HET 2 'YORUFFER POINTER

70 TACTV? BYY 1 PYOTRANSFER ACTIVE BOOLEAN

80 TEOLFL BSZ 1 1" EOL BRANCH REGUEST BOOLEAM
FOOIEQLI RSZ 2 YO BOTO/AGOSUE FOINTER

160 OCoUMT BEY

2 FOUTPUT CHARACTER COUNT
110 DFOINT B2 2 '"BUFFER FOINTER
120 DACTY? RBSF | 'OTRANSFER GCTIVE HODLEAN
130 DEOLFL HSZ 1 YYEDL BRANCH REGUEST BOOLEAN
t40 DEOL1O pEz o PBOTOAGOSUR POTNTER
150 CACTV?Y ‘Bar 1 'ON BREAK ACTIVE BOGOLEAN
140 CEOLFL RS5Z | 'OEDL BRANCH REGUEST BODLESN
170 CEOL 1O R&Z = ' EOTO/BOSUR POTNTER)
180 STEST? RBSZ | 'TEMFURARY SELF TEST RESULT STORAGE
190 SRVEOL BSZ 1 '"EUL BRAMCH TN PROGRESS BOOLEAN
200 ELBDRM BST7 12 'MAKE INFTIALTZATION EASY
SO TERRRERRE A XL R H A RASVSTEN ADDRESSES WMOT TN MELOESE "
220 CNTRTN DAD 34007 "WATTS [R311 %14.467 MILL ISECDMNDS
TR0 800G DAL 100447 "BIT LDG OF RESIDENT (&FLECT CODES
240 R&LIMZ DAD 101720 VSTALH (IVERFL AW FENGE
350 SYSERR DAD 7e7)3 'SYSTEN ERROR LOBGIMG ROUT INE
260 IRGOFAD DAD 102505 'AIDRESS FOR STACK OVERFLOW TEST
=70 IROKRTH [T Wbl =T N [Algalae
280 INTREC DAD 177500 'L/ ADDRESS FOR TC CONTROL, ETC.
TR0 SYSRTM DAD 210 PVALDRERS OF & RTN THSTRUCTTON
300 CLEHIT DA So7 'SYSTEM EOL SERVILE ENTRY
IO CHREDT pab =44 bW SOME v
T20 XCBITE DAD 274 b BAME »
330 TRAT DAL 1525 'SYRTEM TRACE ENTRY
340 SETTR1 DAb 2320 L EAME ¢
TEO CLREIT DAD Sd44 PEYSTEM LNLDGS I.0°S ENL REDLUEST
E&U IFHERE DAL 101045 'EODLEAN == TPRIN BINARY 1S LOADED
I70 GOTOSYU DAD 17435 'SYSTEM ROTO/EOSUR PARSE ROUTINE
TR0 TEMET DaD 1OLL20 "OBATH AODRESS FOR BURST INDEXED
IR0 ESHOMIE pab 1a7a1e CROTINE ADDRESS IN 10SP HOOK
Fan FIN

4-237

INDEX

A

ABORT, 3-33
ABORTIO statement, 3-48
Abort I/0 utility, 3-32
Addresses, 1/0, 3-13
2Addressing

BCD, 3-2B

GPID, 3-28

HP-IB, 3-29

primary, 3-28
ADDRS3 keyword, 3-28B
ASSERT, 3-22
Assert byte, 2-12, 3-20
ASSERT statement, 3-48
ATN, 2-12

B

BASIC timing leocop, 3-54

BCD addressing, 3-28

BCD input, 3-24

BINLOP, 3-37

BINSUB, 3-37

BINTAE, 3-13

BOUTLP, 3-37

BouTsE, 3-37

BRSTRM, 3-42

Burst execution speed, 3-46

Burst I/0, 2-2, 3=34

Burst I/0 processor command,
2-18

Burst termination, 2-13, 2-14,
3-41

BURSTN, 3-37

BURSTT, 3-37

Busy bit, 1-5

C

Calculator control register,
1-4

Calculator end data bit, 1-4

CCR, 1-4

CED bit, 1-4, 3-41

CLEAR statement, 3-49

COM bit, 1-4

Command bit, 1-4

Commands, 2-1

Command bytes, 2-2

Common end code, 3—-46

CONT 28, 3-19

CONTRL, 3-19

CONTROL, 3-=18

Control bits, 1-3

Contrel fields, 2-11

CONTROL statement, 2-11, 3-49

CSTAT, 1-14

D

DCOUNT, 3-21

Delimiter character, 3-20
Device selector, 3—-28
DIRCMD, 3-15, 3-16
DISINT, 3-38, 3-4@
DISTAL ;- 3-39

DIST@Ll), 3-38

DISTEZ2, 3-319

DTERM, 3-=21

E

ENABLE INTR statement, 3-49

End-of-line character seguernce
sent, 3-44

ENTER statement, 3-22, 3-49

EQLSV, 1-14
Execution speeds

BASIC, 3-27
BCD, 3=25
GPIO, 3-26
HP-IB, 3-25
Serial, 3-25
Extension, 2-2

F

FDPX bit, 1-5

Finished EQOL sequence, 2-13

Full duplex bit, 1-5

Full duplex input routine,
3-48

Full duplex output routine,
3-48

G

GOTOSU, 1=-13

GPIO Addressing, 3-28

GPIO Input, 3-24

Group Execute Trigger message,
3-52

H

Halt I/0 utility, 3-32

HALT statement, 1-5, 3-48
Hooks, 1-=-7

HP-IBE Addressing, 3-29

HP-IB Input, 3-24

HP-IE Interface messages, 3-28

I

IBF bit, 1-5

ICOUNT, 3-21

Immediate execute commands,
2-2

INloop utility subroutine,
3=27

INPend utility subroutine,
3=-27

Input, 2-2, 3-23

=

Input wtility subroutine, 3-27

Input buffer, 1-4

Input buffer full bit, 1-5

Input/Output processor, 1-3

Input processcr commands, 2-9

INT bit, 1-4

INTlop, 3-44

INThsy, 3-44

INTCH1, 3-17

INTCHZ2, 3-17

INTCHK, 3-17, 3-4@

INTCM1, 2-16

INTEMD, 3-15, 3-16

INTdne, 3-44

INTend, 3-44

Interface control, 2-2

Interface control processor
command, 2-11

Interrupt byte, 2-13

Interface—-type dependent error,
2-14

Interrupt bit, 1-4

Interrupt control, 2-2, 3-4@

Interrupt control processor
command, 2-10

Interrupt Input, 2-13, 2-14

Interrupt Output, 2-13, 2-14

Interrupt Output Ready, 3-41

Interrupt service routine, 1-8

Interrupting with available
input data, 3-43

INTIN, 3-44

INTOUT, 3-41

INTRTN, 3-17

INTTA1, 3-41

INTTEZ, 3-41

INTwat, 3-44

Invalid I/0 operations, 2-14

I/0 ROM statement simulation,
3-48

IOBASE, 1-14

108, 1-3

I0P protocol, 2-1

08P, 1-12

IRQ2@, 1-7

IRQ28, taking the hook, 1-9

IRQ28+4, taking the hook, 1-9

IRQPAD, 1-12

IRQRTN, 1-11

ISR, 1-B

ISR routine, 3-45

ITERM, 3-21
L
La, 3-29

Listen Address, 3-28

Listen address command, 3-29
Listener active, 3-29

LOCAL, 3-33

LOCAL LOCKOUT statement, 3—-49
LOCAL statement, 3-49

M

Mapping of select codes, 1-7

Mask option, 1-7

MOVSTK routine, 3-45

MVSTEl routine, 3-45

My talk address protocol
command, 3-30

N

NEWIRQ, 1-7, 1-=14

Not Full Dup In routine, 3-48
Not Full Dup Qut routine, 3-48
NUMVA+, 1-12

0

0BF: bit, 1-5

OFF SELFTEST, 1-13

ON INTR Condition Met, 2-13

ON INTR trigger, 2-14

ON SELFTEST, 1-13

Opcodes, 2-1

OUTend utility subroutine,
3=-27

OUTlep utility subroutine,
3-27

Output, 2-2, 3-23

Output buffer, 1-4

Cutput buffer full bit, 1-5

OUTPUT keyword, 3-22

Output processor command, 2-12

QUTPFUT statement, 3-23, 3-49
OUTPUT utility subroutine,
3=27

P

Pack bit, 1-5

PASS CONTROL statement, 3-49

PED bit, 1-5

PPOLL statement, 3-34, 3-39

Primary addressing, 3-28

Processor, 1-4

Processor acknowledge bit, 1-5

Processor end data bit, 1-5

Processor status register, 1-4

Processor status register
diagram, 1-5

PSR, 1-4

R

Read auyxiliary, 2-2

Read auxiliary processor
command, 2-11

Read status, 2-2, 3-18

Read status processor commands,
2-4

Reason byte, 2-14

Register 1 Condition Met
Interrupt, 3-42

REGST1, 3-42

REINGZ2, 3-39

REINT, 3-39

Remote enable message, 3-33

REMOTE statement, 3-33, 3-50

RENT@13-30

Reports, 2-14

REQUEST statement, 3-5f

Reset bit, 1-4

Reset Einished
Self-Test failed, 3-43
Self-Test passed, 3-43

RESET statement, 3-58

RESTOK, 3-43

RESUME, 3-33

Resume I/D utility, 3-32

RESUME statement, 3-50

RQUEST, 3-22

RST bit, 1-4

RSTk1p, 3-43
RSTrtn, 3-43

5

SCAN, 1-13

SCOUNT, 3-38

Select code, 1-3

Select code byte
interpretation, 1-8

Select codes, mapping, 1-7

Self-Test failed, 2-13

Self-Test passed, 2-13

Self-Test results, 1-8

Send, 2-2

Send end-of-line character
sequence I/0 utility, 3-32

SEND statement, 2-12, 3-58

Serial Input, 3-24

Service Request, 3-20

Service Request byte, 2-12

SNDCMD, 3-18, 3-31

SNDEQL, 3-33

SRQ, 1-5

STATUS, 3-18, 3-19

STATUS statement, 2-9, 3-51

STCKok routine, 3-45

Stack overflow, 1-18

Stack, return, 1=7

cTAT1@, 3-19

STATZ2@, 3-19

String Enter, 3-13

String Output, 3-13

EVCWRD, 1-12, 1-13

T

TA, 3-29

Talk address, 3-28

Talk address command, 3-29
Talker active, 3-29
Termination character, 2-12
TFLG bit, 1-5, 3-41

Timing, 3-52

Token, 1-12

Transfer Count, 3-28
TRANSFER FHS statement, 3-34
Transfer flag bit, 1-5

I-4

TRANSFER statement, 3-51
Translator, 1-3

Tr?nglatcr Addressing table,
TRGR1l1, 3-32

TRIGGER statement, 3-52
TRIGlp, 3-32

u

Unlisten interface message,
3-29, 3-38

Unlisten

My Listen Address, 3-52
My Talk Address, 3-52
Utilities, 3-13
Utility subroutines
Command Handshaking, 3-15
INPUT, 3-27
INLOOP, 3-27
INPend, 3-27
ouTRUT, 3-27
OUTlop, 3-27
OUTend, 3-27

W

Write auxiliary, 2-2

Write auxiliary processer
command , 2=12

Write control, 2-2, 3-18

Write control processor
command, 2-11

