HEWLETT-PACKARD

Assembler ROM Manual

Owner's Manual

HP-87

0,8560,—0.8348

0.0080 07610 1.0506 |
0.0 0.0569 —0.:25207
0.0 —0.4688 —0.5963

—0.0709

Sy —0.8381 —0.4806 0.1632
00726 —04109 | —0.5354| 0.7253 —0.1144
| —02002 —06231 | 01027 —0.1411 0.7357]

[14446 16867 1,253'1::1

R=| 00| —13389 -—0.1486]

0.0 0.0 J.]E'JE_J

| I

A cackaro

Assembler ROM and
HP 82928A System Monitor
Reference Manual

HE-B7

May 1982

pe@s7-o014d

Printed in U.ZS.A. tHewlett—-Packard Company 1982

CONTENTS

Section Page
I INTRODUCTION

I.1 GENEra]l: THFOEMEETION. v m e n mmme se s b mis s s s s s abs sde s s enss 1-1
1.2 The Assembler BOM ceeeesccssscsssssasssasassssessnasssssssas 1-1
1w The HP B2978A4 System MOHILOr sessssesssvpesmssronssvansmsrs 1-2
1.4 Using HP-83/85 Binary Programs on the HP=87 .veeevssscanone 1-3
1.5 Assembler Commands, Statements, and Functionseere-sses 1-=5

II CPU STRUCTURE AND OPERATION

ERN Register Bank jwe oo el eeie oliveiind e sieten soe e e e e i ee

2.1 2=-1

2.2 Numbier RepresenbabIon .ivesivsiemes s sssrees srviveeseseinsysss 2-5

2.3 BEOLUS TOOTCAEOTE cvaiiveavs mrmosen v sars st dn s s s 2-8

IIT OPERATING SYSTEM

vl IDEEDHEORTOTE. e b o s a e 5 wassn 6 w60 SR s v 3-1

3.2 SVSTem: MEMDIEYE s e e el S s e s o e i i o B T e T 3=2

3.3 A EATT SYSTEM BLOW, o s e e n e 0w e sresemi aon e el e e 3-6

Sl Allocation and Deallocation: cevedeeiee e es s s s s e 3-18
J=h Brecubive LOOD SUeiiisiesa sl drsgees v daa 3-la
356 INEELTUPES . .esbissesesssiesusaisssimssesivsnsaviiis v 3-18
Fu7 HOGKS: sivvicsmnmnsnsasnasonssssns il R . R e A 3=21
2.8 Extended Memory Controller ..ccescesasnssssasasssnnnssnssss 3-29
3.9 PACSING +vvueveesecncanesnonnssssesnasassesssanssnsnsannnnas 3-32
18 DeramBiIing ceewmmam s se e A R 3-34
Fedl (GPSLALing SEOCK wewms sien sne smmmanna v ees s NPT IOT. 3-37
3.12 Format of BASIC Programs and Variablesccsevcvscerass 3-41
v CONTROLLERS

4.1 INELQEICERON: e i e e a0k e 0 o e W e R 4-1

4.2 ERT Eontroller couis @i i eees a e deeldaes o etk o 8 e e e 4-1

4,3 Display MOdeS siisencnsssssansinsnanssasssasssnnnsnssssns d-4

4.4 Kevboard Conbrollel i vicsesssannssssssnsssssnnnsannannas 4-8

4.5 b i S AT L R PP R L o L () g e 4-11
4.6 CDEAKEY et ese s s sass st s st s ns st sen st s nnnrrsiessnnnes 4-14

<

<
=
e
=

® % & ® B 8 8 & & a
WO 00 -] SR b Lo B

oo oo 0o 0o 00 O 00 0 00 OO OO D
=

SYSTEM MONITOR

TNErodREEIBN sonesnscsasnesnnssrsansnasearaansestosssinsses 5-1
System Monitor Commands .seevessesssnssnssss tesesssessnnaas 5-1

WRITING BINARY PROGERAMS

Program SErUCtUCE siesenasesseasessisessassiissasnssssssans 6-1

AEETibutes il ieesasnasasnssransssisssassniansannassesinsre e—18
FusambBler TSR ELRIS s R T e e e e T e £-13
ARP and DRP Load INStructiofl® seerssridadananssnsssssnassa 6-43
fther INSErHEELIBNG cavis smoamin eie s ns s se b bbes ees s dsia e e f—d44
Assembly of CPU IASErUCEIiONS ..vsssssssssssasssssesssasans 6-45
Multiple Binary ProgramsS sscsssssssssssassssssssassnnsennas 6-58

SAMPLE BINARY PROGRAMS

INTEOANCETION, v s e s o ae e am e b w0 s 0 i R WO e . T7-1
String Highlight SR e T A R T e 7-2
ERT CoRntrol ie s daliieeei s sesais desssiasi AT A TR T=8
Line INPUL sevessssasassasnsaisnrinsssesssninennanananssns 7=11
Taking the KYIDLE Hook and Buffering the Keyboard 7-15
SAVEENT BET .o iis wanessssssvesesnireise & raa A aiwials PR

REFERENCE MATERIAL

DVEBECLIEW wwrswmw s s o e e o s m s s ae e e s s s b s 68 s e a e -1
THe Blobal: PELe wawaim s s e o s saoainie w wm e e i s s e 50 a5 -2
System Operation and Routlnesvevreescssccscinnssnnns =11
Parsing Flow Diagrams ...sesssssssssnsssans R AR T A g-97
Hook: Ploweharts osssvdse ey v s Saa i s avevis B-1€0
System Runtime Table/Tokens and Attributes 8-109
EXror MESSEQES .seesssscsasssnsnsnansasansnssss A R R B=116
System Hardware DISgram .s.esesessssssssssssssssssssnasnsns g§-118
Assembler Instruction Set ... ieeceeeiricinecanrsannnsnsnnns B-119
Assembler Inskruction Coding seesssvensssnsssssssrsssns sews B-126
Reycode Table wieesesssesansssssssssssssnnsssasnnnannnnans B-127
Programming HINES ..eeseeesssrsccccssssssnsnassnsssannsnnes 8-129

iii/iv

Eection

INTRODUCTION

1.1 General Information

This manual outlines the commands, statements, instructions, and use of
both the HP-87 Assembler ROM and the HP B2928A System Monitor. The
manual assumes you have Some knowledge of programming in assembly
language. If you are not familiar with the HP-B7 Personal Computer, you
should read the owner's manual.

The HP-87 contains both read only memory (ROM) and read-write or random
access memory (RAM) . The RAM contains the wuser's BASIC language
programs and data, and can also contain up te £five binary (machine
language} programs. The ROM contains the machine language pregram that
recognizes and executes the statements provided by the BASIC language.
Thus, the operating system ROM provides such statements as PRINT, DISP,
and INPUT.

When external peripheral devices ars added, their wider range of
capabilities requires more extensive BASIC language statements teo fully
use these capabilities. Additional external BROMs enrich the BASIC
language by increasing the number of statements and functions that can
be recognized and executed. Similarly, a binary program also extends
the BASIC language.

1.2 The Assembler ROM
Using the Assembler ROM, you can write assembly language binary programs
for residence and execution within the computer or for creation of a
plug-in EPROM for the computer. A binary program cant

e Extend the BASIC language.

@ Give increased execution speed.

® Redefine the svstem.
The Assembler ROM permits you to enter and edit source code for binary
programs on the computer's CRT screen. Adutomatic line numbering and
cursor movement are active, and the source code can be stored on a mass

storage device, listed, and edited. As source statements are entered,
they are automatically checked for syntax errors and duplicate labels.

1=1

Section 1: General Information

At assembly time the resulting object code (machine language) is stored
on the mass storage device. The object code can also be loaded
automatically or on command, and it is then ready to run.

To aid in programming, a disc is supplied with the Assembler ROM. This
disc contains a global file of the system labels and their memory
addresses for wuse during assembly. The disc also contains the sample
programs from section 7 to help illustrate how binary programs are
created and run.

The Assembler ROM gives you the ability te tailor statements for your
own applications, to speed up program execution, and to perform
sophisticated graphics. But with all the power and system accessibility
provided by the Assembler ROM, it is also possible to defeat the
computer's internal safeguards and even seriously damage the computer.
For this reason, you should understand assembly language programming
before attempting to use the Assembler ROM.

1.3 The HP 82928A System Monitor

The system monitor is an optional plug-in module that is designed for
use only in conjunction with the Assembler ROM. The system monitor is
not required, but it makes the debugging and modification of binary
programs much easier.

With the system monitor module attached, you can set breakpoints that
interrupt the execution of a program. After program execution has been
interrupted, you can examine or change the contents of memory, execute
one instruction at a time (single-step), or you can trace the operation
of a machine language program, printing the status of the CPU after each
instruction.

System monitor instructions are discussed in detail in section 5 and the
use of these instructions is demonstrated in section 7.

Section 1: General Information

1.4 Using HP-83/85 Binary Programs on the HP-87
The HP-B7 uses the same CPU as the HP-83/85. The programs are entered,

stored, listed, and run in the same manner. There are some differences
on the HP-87 which include:

e BASIC programs are stored in reverse order (executing from the
higher addresses and progressing to the lower addresses).

e The extended memory controller makes it possible to access more
MEeEmMary .

e Five binary programs can be resident in the computer at a time.
e PTR1 is used as the BASIC program execution pointer at run time.
e PTRZ is used as the output stack peointer at parse time.

e Entire programs are no longer allocated before execution begins.
e The BASIC program control block in the HP-87 is 48 bytes long.

¢ The operating stack is of fixed length in the system RAM.

e ©5tring values are passed on the operating stack as a two-byte
length and a three-byte address.

e Inverse video, more display modes, eight bit CRT addresses,
and access during horizontal retrace periods are a few of the
changes affecting the CRT.

Because the differences are only highlighted in this section, you should
refer to individual sections in this manual to become familiar with the
HP-87 Assembler ROM before writing programs.

To modify an existing HP-83/85 binary program for use on the HP-87:
1. Pick a binary program number and put it in the NAM statement.
This should be a value between 208 and 377 (octal). Numbers from
@ to 177 are reserved for use by Hewlett—Packard.
Two different binary programs may have the same binary program

number, but they cannot be loaded and used at the same time.
Attempting te do so will cause a BAD BIN-LOAD error.

1-3

Section 1: General Information

i@,

1-4

Modify any ABS statements. In the HP-B3/85, all binary programs
were loaded so that the absolute base address could be calculated
by the Assembler ROM at assembly time based upon the length of the
binary program. In the HP-87, this is not true. A change must be
made in the ABS pseudo-opcode. You must have an absolute base
address.

This only applies to binary programs that were written as absolute
code. Most binary programs are relative and not affected by this
change.

Modify all parse routines to use PTRZ as the coutput pointer rather
than R12-R13,

Modify all parse routines to push the binary program token out as:

TOK$# BPGME 371
rather than:

371 GARBAGE-BYTE TOK#
Change all RUNTIME references to R1D into references to PTRI.

Modify all code that uses string parameters that are passed on
the R12 stack. These strings use three-byte addresses on the
HE-87, rather than the two-byte addresses used by the HP-83/B85.

Check all references to any system routines to see if any changes
have occurred to the input/output conditions of the routine. Make
any necessary changes.

Change all system/global address definitions.

Any routine that gets control through s RAM hook (such as CHIDLE,
EXYIDLE, IOTRFC) must calculate the base address of the
binary program rather than locading it from BINTAB. Use the code:

LABEL LDM RZ8,R4
BIN
SBM R2¢,=LABEL

This will leave R20-R21 with the absolute base address of the
binary program. This change is necessary only in relative binary
Programs.

If the binary program uses its own error messages, ERRBP# (a RAM
location in the system global addresses) must be set to the binary
program number before calling ERROR or ERROR+.

CBection 1: General Information

1.5 Assembler Commands, Statements, and Functions

The commands and the statements and functions provided by the Assembler
ROM are added those which are already part of the instruction set. They
are executed exactly as the rest of the instruction set, and have bheen
created te help the programmer centrol and use the assembler.

Assembly language elements are used as the actual instructions in
writing binary programs, The format and use of these elements are
discussed in section 6, and complete list may be found in sections 6 and
8.

Assembler Commands

& command is nonprogrammable, and can be executed only from the
keyboard. The assembler commands permit the user to transfer between
assembler and BASIC system modes, to assemble, store and load binary
program Source code, and to find labels within the source code in
MEMOLY .

ALOAD file name
Assembler Command

Legal only 1in assembler mode. Loads source code that was previously
stored with the ASTORE command inte computer memory Erom the file
specified on the currently selected mass storage device. The file must
be of the type known as extended *%#%% or ASSM.

Note: The extended type of f£ile, denoted by ***%* gn the directory of a
mass storage dewvice, does not necessarily mean that the £ile contains
source code. In fact, other HP firmware and software may generate
extended type files.

ASSEMBLE file name [,numeric wvalue]
Rssembler Command

Legal only in assembler mode. Assemhles source code currently in the
computer memory and stores it in the file specified by file name on the
currently selected mass starage device. The assembled source code is
stored as either a binary program or, 1if the file has been declared a
ROM or global file, as a series of strings in a data file.

Section 1: General Information

If at assembly numeric value is evaluated as zero, the binary program
currently in the computer memeory is scratched, and the object code of
the newly assembled binary program is lpaded from the mass storage
device into memory . Default numeric wvalue is evaluated as zero.

If at assembly numeric walue is other than =zerc, any binary program
currently in memory remains inviolate, and the object code of the newly
assembled binary program is stored only on the current mass storage
device,

Note: If a program contains an error or 1if programs are linked at
assembly, this command can destroy the source code; if the source code
is to be saved on a mass storage device, it should be stored there
before typing ASSEMELE.

ASSEMBLER
Assembler Command

Legal only when the computer is in normal system mode, this command
scratches memory and puts the computer inte assembler mode. In
assembler mode, most normal BASIC statements will still operate, but
only as calculator mode statements; they are not programmable. Source
code for a binary program can then be typed in with line numbers, just
as a BASIC program is typed in while in normal system mode (but with
only one instruction per line). Unlike its operation in normal system
mode, the computer 1is somewhat sensitive to character spacing while in
assembler mode. Auto line numbering, screen editing, listing, etc., are
all functien. The [CONT], [STEP], and [INIT] keys are inoperative in
assembler mode. Displays READY when executed.

ASTORE file name
Assembler Command

Legal only in assembler mode. Stores the source code currently in the
computer memory into the specified file on the currently selected mass
storage device. File is of the type known as extended, shown 1in the
directory as extended (****} or ASSM.

BASIC
Assembler Command

Legal only when in assembler mode, this command scratches memory and
puts the computer back into BASIC mode. Display READY when executed.

Section 1: General Information

FLABEL label
Assembler Command

Legal only in assembler mode. This command searches through the source
code in memory for the label specified. For each occurrence of the
label the line is listed. After an FLABEL command has been executed,
pressing the [LIST] key causes the source code to be listed, beginning
with the last line where the label occurs.

FREFS string
Assembler Command

Legal only in BASIC or assembler mode. BSearches through the source code
in memory for all occurrences of the specified string. After an FREFS
command has been executed, ©pressing the [LIST] key causes the source
code to be 1listed, beginning with the first line where the string
occurred. Pressing any key will cause the FREFS command to halt
prematurely.

Assembler Statements and Functions

Statements and functions are programmable BASIC language elements. The
statements and functions provided by the Assembler ROM are simply
additions to the BASIC language of the computer. As with all BagIC
statements and functions, they may be wused either in calculator mode or
as part of a BASIc program when in BASIC mode. When the computer is in
assembler mode, all BASIC statements and functions may be executed only
from the keyboard.

DEC
hssembler Provided BASIC Function

Returns the decimal equivalent of the specified octal wvalue.

MEM address [:ROM#]],% of bytes][=#,f,..]
Assembler Provided BASIC Function

Dumps the contents of computer RAM or ROM memory to the current CRT IS
device beginning with the octal address given. Continues dumping for
the specified octal [,# of bytes]. At power-on, default $ of bytes is
1¢@ octal; otherwise, default is the last § of bytes specified.

The [:RoM #1, if included, is an octal value that selects the plug-in

RCM from which memory is dumped. At power-on, default wvalue for ROM #
is @; otherwise, default is the last ROM # specified.

1=

Section 1: General Information

1f =#,4 is included in the statement, memory i1s not dumped, but instead
the contents of memory 1locations beginning at the address given are

changed to the octal walues specified after the = sign. The memory
locations must be in RAM. The contents of one succeeding memory
location are changed for each value specified after the = sign. The 4

of bytes, 1if included in the statement, 1is disregarded in this case.
Pressing any key will cause the memory dump to halt.

MEMD address [:ROME][,# of bytes][=§,8,...]
Assembler Provided BASIC Statement

Same as MEM except reads the contents of three bytes of memory beginning
with the address given and uses those contents as the address.

00T decimal numeric value
Assembler Provided BASIC Statement

Returns the eguivalent of the specified decimal value.

REL octal sddress
hAssembler Provided BASIC Statement

Returns the absolute address of a relative address. Takes the relatiwve
octal address and adds to it the address (called BINTAB) of the
beginning of the last binary program that was accessed to yield the
octal absclute addres. May be used alone pr with the MEM command. May
alsc be used with the command BKP 1if HF B82928A System Monitor is
installed.

SCRATCHBIN
hesembler Provided BASIC Statement

Scratches all current binary programs from computer memory, without
affecting anvything else,

1-8

Section
II

CPU STRUCTURE AND OPERATION

2.1 CPU Register Bank

The central processing unit (CPU) consists of 64 eight-bit registers, an
address reglister pointer (ARP), &a data register pointer (DRP), an
arithmetic-logic unit (ALU), a shifter, and a set of status indicators.

The 64 eight-bit registers are grouped into two sections. The Eirst 4@
{octal) registers have two-byte boundaries and are used principally for
addresses. Many of these bytes are reserved by the CPU for use as
special purpose registers, and direct access to these should be avoided.
The next 48 (octal) registers a&are separated by eight-byte boundaries.
Floating-point numbers, &4 bits long, are stored here. The programmer
must be aware of what is destroyed when the system uses these registers.
The effects of system routines on register contents are found in section
B,

Any register in the CPU may be used as an accumulator when performing an
operation. To distinguish between the registers, the CPU uses the DRP
to designate the accumulator and the ARP to designate the operand. The
DRF directs the results of arithmetic operations to the register it
points to, and the ARP supplies the second aoperand when it i3 needed.
Both the ARP and the DRP can be used to address any of the bytes in the
CPU register bank. The CPU register addressed by the ARP is called the
address register, or AR. The register addressed by the DRP is called
the data register, or DR.

2=-1

Section 2: CPU Structure and Operation

Hardware—-Dedicated Registers

Registers

Description

Byl

6,7

Register Bank Pointer: R@ points to the
remainder of the CPU register bank. RI is
only accessable through RE.

Index Scratch: H2-R3 are used for address
calculation for indexed addressing.

Program Counter (PC): R4-R5 hold the
absalute address af the next instruction
location.

Eeturn Stack Pointer: R6-R7 contain the
pointer for the subroutine return stack.
When a "JSB=" subroutine jump is executed,
the CPU pushes the PC (R4-R5) on the stack.
When the RTN is executed, the CPU pops two
bytes from this stack and places them in
R4-R5 (program counter).

Software-Dedicated Registers and EMC Pointers

Fegisters/Pointers

Description

PTR1

PTRZ

1¢,11

12,13

14

At run time, contains the program counter
(PCR), & pointer for executing BASIC
pPrograms.

&t parse time, used to point to the parse
cutput stack.

Not software dedicated at run time. When
parsing, R18-Rl]l point to the next
character of the input ASCII stream.

Operation Stack: Parameters and results are
passed on the stack pointed to by this
register pair. Containz expressisns when
the BASIC program is decompiling.

When parsing or decompiling, R14 contains
the current token being processed.

Section 2: CPU Structure and Operation

Software-Dedicated Registers and EMC Pointers

Registers/Pointers Description

L& Current Status (CSTAT): R16 contains the
code that indicates the current mode of

operation. The table of CSTAT codes is

found in paragraph 3.4.

17 External Communication Status (XCOM): When an
external interrupt takes place the status is
stored in R17. The table of XCOM status
codes is found in section 3.

Multi-byte operations can be performed with the help of the register
boundaries. The number of consecutive registers that will be wused in

the operation is determined by the distance between the DRP and the next
boundary.

Example: In a multi-byte addition & 64-bit quantity contained in
registers 50 through 57 will be added to a 64-bit guantity in registers
60 through 67.

DRF BOUNDARY

l

R67 RG66 R65 RG64 HAG3 HAG62 RG61 RG0D AR57Y HAS6 RS55 RS54 RE3I RE2 RE1 AS0

|
|

ARP DRP

The operation begins with the registers pointed to by the DRP and the
ARP, processing the registers within the boundary. The result is stored
as a multi-byte quantity in the registers pointed to by the DRP.

2=3

Section 2: CPU Structure and Operation

Example: A multi-byte load with the DRP set tg R74 and the ARP set to
R1l will load the the four registers RV4-R77 with the contents of
R11-R14.

R7Y R76 R7: R74 R73 RY2 R71 R70 R17 R16 R15 HAi14 R13 R12Z R11 R10

BOUNDARY DRF ARF

The boundary is determined by the DRP and is ignored by the ARE. In the
previous example, the load terminates when the DHEP reaches the next
boundary.

Example: The multi-byte store recognizes the boundaries 1in exactly the
same way as the multi-byte load. Attempting to store with the DRP set
te R11 and ARP set to R74 would result in the loss of several bytes due
to the boundary after RI1L.

R7Y RA76 R75 R74 R¥3 RYZ2 R7T1 R70 R17 R16 R15 R14 R13 R12Z2 R11 R1O

1

t f

ARP DRP
The boundary after R11 stops the multi-byte operation. Only one
reglister 15 transferred to 1ts destination, that is, H74. The DRP

always determines how many bytes will be invelved in a multi-byte
operation.

There are alsc two-operand operations where the DRF points ta one
operand, and the second 1s located in computer memory. The number of
bytes used in the operation 1is dependent upon the boundary after the
DRE, That number of bytes of memory will be used starting at the
location described by the label or pointer accessing computer memory.

Section 2: CPU Structure and Operation

Example: This load will be done with the address BINTAB, which is a
label pointing to an address which contains the address of the start of
the binary program. The DRP will point to R14.

BOUMNDARY

R17Y R16 R15% RA14 RT3 R12 R11 R10

240 [234 BINTAR 234 240
(104070}
DRP

Because the boundary iz two bytes from the DRP, two bykbes are accessed
from memory.

2.2 Number Representation

The CPU can operate on numbers as octal and binary-coded decimal (BCD)
quantities. All registers and register addresses are represented as
pctal numbers, and all floating-point numbers are represented in BCD
notation, that 1is, each decimal digit is stored as a four-bit binary
number, with two digits per register. §Since +the CPU cannot tell one
representation from another, it is important teo keep track of the way
numbers are stored when doing arithmetic operations.

An address is always an octal value that occupies 16 bits or, for the
extended memory pointers, 24 bits. The highest-numbered byte contains
the first; or mest Significant; part of the address, and the
lowest=-numbered byte contains the last, or least significant, part of
the address.

Example: The octal address 177605 is stored in two registers, RI13 and
RlZ. An address is always an octal value that occupies 16 bits and is
c¢ontained in two registeres.

177685 = 1111111112800181

Binary Representation

R2% 111113 101 HZ6 12888 1lal

Octal Representation

R27 3 7 R2& 285

2-5

Section 2: CPU Structure and Operation

The ARP and the DRP will always point to the least significant byte of a
multi-byte operation.

With BCD numbers, decimal one is represented with four bits, ¢ @& @ 1,
decimal two iz @ @ 1 8, on up to decimal nine, which is 1 @ @ 1. When
the decimal number has more than one digit, each digit is represented by
four bits.

Example: The decimal number 3738 is represented by 16 bits.

3=pP1l 7=p111 3=@611 8=16G80

Binary Representation

R27 (51 I = - S R B | RZ6 881l 18660

Octal Representation

R27 g e 7 R26 70

Each byte can contain two four-bit BCD digits. Each register can
reprasent numbers in the range 88 to 99.

The ten's complement is used tp simulate subtraction exactly like the
two's complement is used in binary arithmetic. The ten's complement is
formed by subtracting each binary-coded digit from nine (nine's
complement arithmetic), 1 @ @ 1, then putting the digits back together
to form the number again and finally incrementing the entire quantity by
one (one's complement arithmetic).

The negative of a number in BCD representation, for subtraction purposes
or in special cases to show the sign of an exponent, is found by taking
the ten's complemsnt.

Example: To find the negative of 19, each digit, 1 and 9, is subtracted
from 9, or, another way of locking at it, 19 is subtracted from 99.

89 1981 1881
= 185 - @agl _1@gl
80 1400 @oga

Section 2: CPU Structure and Operation

Add one to the combined result:

gp 1008 2@ap
+ @1 + GRaE @adl
Bl l9e@ Beel

In effect, when 81 is added to 19 the result is #8@ in BCD notation.

Numeric guantities may be represented as real Eloating—-point, short, and
integer formats. The real and short forms are expressed as BCD digits,
and the integer form is a five-digit number with a sign digit at the end
of the quantity. The system represents all numeric guantities in BCD
notation.

Real numbers have a mantissa of 12 digits, and exponent and sign
information, all stored in eight bytes. The mantissa £ills the 12 most
significant nibbles of the number, the sign takes one nibble; and the
exponent is contained in the last three nibbles. The most significant
digit of the number 1is stored in the most significant byte, and the
decimal point 1is assumed to be immediately after the most significant
digit. The sign of the number follows the least significant digit of
the mantissa, and the exponent, expressed in ten's complement notation,
is found in the three least significant nibbles of the guantity.

Example: The real number 468.3341673 {in scientific noktation
4.683341673 x 1872), would be represented in BCD as:

Maost Laast
Significant Significant
Digit of Exponent Digit of

Expanant
4 6 B 33 4 1 6 7 30 oND + 0 \2
Al

IIZIiI:Iﬂ 1100 | 1000 0071 | D011 0100 | G001 2410 | 0197 0011 | D000 0000 | GDOD QOG0 | D000 0010

R77 R76 .R75 R74 R73 A72 /Fm] R70
Sign Middle Digit
Mibble of Exponant

The radix is assumed to be in R77 between the four and the six.

Integers are stored in three bytes, with five digits and a2 sign. The
most significant digit of the integer is stored in the least significant
byte. Real and short number representations are not right justified
like integer representation.

2=

Section 2; CPU Structure and Operation

Example: The integer 6483 would be represented in BCD notation from the
least significant digit, 3, to the most significant digit, 6, with the
sign, positive or 8 @ @ B, in the most significant E£our bits of the
guantity.

T 0 & 4 8 3

I'II.'H'.II:I oo0oo) 481G aTg0n | 1000 aD11 I

R77 R76 R7G R74 R73 R72 R71 R7Q

Sheort numbers hayve a mantissa of only five digits and an exponent of two
digits. Both the mantissa and the exponent have sign bits, found in the
most significant digit. The representation of the mantissa begins
immediately following the sign bits with the most significant digit of
the mantissa found in the second digit of the most significant byte.
The assumed decimal point is directly after the first digit, then the
rest of the mantissa is represented. The two least significant digits
hold the exponent, which 1is not in complement form because the sign of
the exponent is in the most significant digit.

Example: The short number -.0064 need not be represented as a l2-digit
real number. In BCD short form it is represented as:

- 6 4 oo oo 3

II:IG11 G110 0100 odod | DoDo 0ooo | Doo0 0011 |

R77 R76 R75 A74 R73 R72 R71 R7O

The radix is assumed to be between R77 and R76.

2.3 Status Indicators

The CPU contains eight flags and a Four-bit register for program status.
The flags signal the present condition of the data, while the four-bit
register serves as an extended register for counting and data
manipulation.

2-8

Section 2: CPU Structure and Operation

Status can affect or be affected by CPU instructions. The instruction
set has data movement instructions of both the arithmetic and
nonarithmetic types. These instructions include:

e Arithmetic: Add, substract, compare, increment, decrement, and
complement.

e DMNonarithmetic: Load, store, "and", "or", "exclusive or", shift,
clear, and test.

The CPU contains the following one-bit status flags and four-bit extend
register:

DCM Decimal Mode Flag: This flag determines whether the system
is wusing binary numbers or BCD numbers 1in arithmetic
operations. In BCD mode, each decimal digit is converted to
BCD, and all arithmetic operations are done with the
resulting four-bit digits, This is the way £floating-point
real numbers and integers Erom BASIC programs are
represented.

The system uses this flag to determine the correct mode, so
the wuser must make sure it is set properly for arithmetic
operations. All shifts and all arithmetic operations are
affected by the DCM flag.

Two instructions affect the status of the DCM flag: BCD sets
it to 1, and BIN clears it.

E Extend Register: In BCD mode,this four-bit register will
accept the displaced digit resulting from a shift. Once in
the register, a BCD digit may be incremented, decremented,
or cleared, and, if needed, the digit may be returned to the
register it came from using the extended shift instructions.

CY Carry Flag: In binary mode, this flag will indicate the
result of a bit shift. A bit may be shifted into the CY
flag, tested, and then shifted back inte a register, using
the extended shifts. It functions similar to the extend
register in BCD mode.

2-9

Section 2: CPU Structure and Operation

2-1@

During all arithmetic operations, the CY flag will be set
with the carry out of the most significant part of the
pperaticon. In addition between two numbers where the result
is koo large for the register to hold, or in subtraction
where the result is positive, the CY flag is set to 1. The
CY flag may be thought of as the "borrow" if needed for
subtraction.

When two quantities are added, the CY flag is set with the
carry, 1f any, resulting E£rom the addition of the most
significant bits.

Examples:

If two positive numbers, both with a most significant bit
of @, are added, then the carry will always be 8.

61 epoo 1 0

+eelagel ol

cy [a] [e1186111]

If a positive number is added to a negative number, in
reality a subtraction, then two possibilities could occur:

1. 'The result could be negative, in which case no carry
would be made.

e@lp1l11 1]

+leo1o11 1]

cy [] 1120011 g

2. The result could be pesitive, causing a carry out.

61081186 .1]|

+ (1110100 8]

cv [1] [Po1161 01

Section 2: CPU Structure and Operation

ov

oD

If two negative numbers are added then the CY flag is set to
1.

110000008

+{leegeeael 0|

cy [1] (p1eee o1 8]

The carry flag is set by comparisons in the same manner as
additions.

An increment sets the CY £lag if the data register is all
1ts.

[11111111]

+|spepvoeel)|

cy [1] [e 66 006000)]

Overflow: The overflow status is determined by taking the
"exclusive or" of the CY flag and the most significant bit
of the data register. It is set to 1 when the addition of
two positive numbers vyields a negative result, when the
addition of two negative numbers yields a positive result,
and when the result of a left shift changes the sign of the
data register.

le 8181111 657
+le1100101]| + 145
ov[i][1ev10100] 202

Least Significant Bit: After any data movement instruction,
the 1least significant bit is shown as the 0D flag. If the
0D flag is set to 1, then the number is odd. If the 0D flag
is @, the number 1is even. The right-most bit in the data
register is always the least significant hit.

0¢lo0lla oD

2-11

Section 2: CPU Structure and Operation

NG Mpst Significant Bit: This Elag displays the most
significant bit ‘in the data register. If this flag is set
Eo 1 then the quantity is negative, and if the NG flag is
clear then the guantity is posgitive.

NG [e] [ee 10011 8]

ZR Zero: If the data register is @ or if a comparison is made
between two egual numbers then this flag is set to 1.

900006000 [1] 2R

LDZ Left Digit Zero: This flag is set if the left-most four
bits are @ @ § @. In BCD mode this would indicate the most
significant digit.

LDZE‘IEIE!E!lBll

RDZ Right Digit Zero: If the least significant four bits are
@@ @ then this flag is set te 1. In BCD mode this would
indicate the least significant digit.

Example: Status information 1is based on the entire multi-byte guantity
that is being processed. All multi-byte operations, except right shift,
start execution with the least significant byte. The right shift starts
with the most significant byte. All status flags, except 0D, RDZ, and
DCM, are updated after each byte of execution and will he correct as the
register boundary is met. The OD and RDZ flags are set for the first
byte and never changed. The E, CY, and OVF flags are only affected by
arithmetic operaticons.

2-12

Section 2: CPU Structure and Operation

After the multi-byte addition of the two system addresses, OFFSET
(BPP1@@) and the label VARIABLE (@8@365), the status indicators will be
set as follows:

OFFSET [l 90 o lopp| (pel1llod p |

+VARIABLE [P o o p v 0@ @] 111161 ail]

gl11al

et

RESULT [1 @@ 0olaol| |pa

DCM CY¥

E ov
[¢] [eeoe] [o] [e] (2] (] [¢] [e] [e]

NG oo LDZ RDZ ZR

2-13/2-14

Section
LIT

OPERATING SYSTEM

323 Introduction

This section explains how system memory 1is allocated, how extended
memory is accessed, and how a statement 1is parsed and becomes part of a
BASIC program. It also explains the sequence of operations that occurs
when a BASIC program is run.

BASIC programs are executed by an interpreter. However, the code that
is interpreted is vastly different from the BASIC statements as they
were originally entered. As the statements are entered, they are parsed
and compiled into a form of RPN (Reverse Polish Notation), which can be
interpreted more efficiently. The BASIC reserved words are converted to
single-byte tokens (refer to Execution by Tokens). This makes the
internal form of the code somewhat more compact than the original form,
and alsoc makes interpretation easier and faster.

Also during the process of parsing and compiling, variables are placed
in a wvariable storage area, with only their addresses and names
remaining in the area containing the tokens. The BASIC program is held
in memory as a series of tokens and addresses of wvariables and
associated data bytes. To execute the program, the computer processes
these token and variable addresses in order. As each token is
processed, it causes the machine to access a table of routine addresses
and execute a specific routine corresponding to the token. If the token
indicates a variable, the machine uses the next three bytes as the
variable address.

Section 3: Operating System

&)

System Memory

Several distinctly different regions comprise the system memory. They
are (all numbers are octal unless indicated otherwise):

3=2

Six system ROMs, each containing 8192 decimal bytes. A subset of
the ROM area is the address range from 68880 to 77777. This
range is shared by system ROMs 8, 1, 328, and all of the external
plug-in ERObs. Bach of the ROMs in this area can be selected or
deselected for talking on the bus, but only one of them can be
selected at a time. Each of these ROMs has a bank-select address
which is its ROM number, ranging from @ to 376. To select a
particular ROM vou store the desired ROM number to an I/0 address
called REELEC. The chosen ROM will be selected and all other
bank-selectable ROMs will be deselected.

RAM, 32768 (decimal) bytes in the basic machine.
Memory addressable directly by the CPU (addresses @ to 177777).

Memory addressable through the extended memory controller (EMC),
3ZK-544K,

The block of 480 addresses (177488 to 177777) which aet as I1/0
addresses, when accessed directly by the CPU. The same addresses
accessed through the extended memory controller will act as RAM
memory, not as I/0 addresses.

Section 3:

DECIMAL
ADDRESS

BK

16K

24K

32K

G4K-256

64K

™

Operating System

OCTAL
ADDRESS

20000

40000

60000

100000

177400

200000

4000000

SYSTEM
ROM

SYSTEM
ROM

SYSTEM
ROM

ROMO

SYSTEM
ROM

ROM 1 ROM 320

GRAPHICS MASS
ROM STORAGE

ROM =

PLUG-IN
ROM

RAM

{If accessed
aither
directly by
the CPLU or
through the
EMC}

RAM

{If accassed
through tha
EMC]

140
ADDRESSES

{If accessed
diractly by
the CPU|

A
(OPTIOMNAL)

Section 3: Operating System

Computer Operation

The basic machine is controlled by
resident at fixed addresses in memory.

system routines that are permanently
The addresses and names of many

of these system routines may be found in the glebal file in section 8.

In addition to the system routines, control
plug—in bank-selectable
times in the
programs and ROMs are polled by the main system.
a number of entry points [hooks)
and modified by a binary program or ROM.

certain

ROMs, or
operation of

Lo a

system,

can also pass to one of the
binary program

the resident binary
In addition, there are
that allow operation to be intercepted
These hooks are normally idle,

in memory.

but they can be used to take over the system at certain key times.

Execution by Takens (Run Time}

| e |) S

Low Addresses

Tokens are used to represent the keyword,
that make

Variable token

T,

Let routine

Token for LET

Token for *

Let address

NI,

Y

Multiply routine

)

I,

v\

* address

up each BASIC statement.

W)

7))

such as LET, FOR, BEEP, etc.,
Each token is a

one-byte gquantity
that the machines uses to find the addresses of routines associated with
that token. Each token must have an asscociated entry in a table of
routines for execution at run time, ancther entry in an ASCII keyword
table, and a third entry in a table of parse routines. A list of system
tokens may be found in section 8.

The computer is a token-driven machine. A program is held in memory as
a series of tokens and variable addresses which the machine processes.

3-4

Section 3: Operating System

For example, at run time as the system executes a program, it processes
a token by fetching the address of an associated run time routine from a
table of addresses. The run time table may exist in a binary program
and/or an external ROM as well as in the main system. The system Jumps
to the specified address te execute the routine, then fetches the next
token and searches for its run time routine in the tables, estc.

Some tokens indicate to the system that the three bytes following the
token contain a variable address. In this case, the system attempts to
find the wvariable 1in the variable storage area and, 1if not found,
creates a place for it. Other tokens indicate that the bytes follawing
the token are constants to be pushed onto the R1Z stack.

Two tokens, 378 ({octal) and 371 (octal), are used to expand the token
tables. Token 378 indicates to the system that the next byte 1is the
number of a ROM, and that the byte after the ROM number is the token
within the ROMs table that 1is to be executed. Token 371 directs the
system to a binary program in the same way.

Section 3: Operating System

3.3 Owverall System Flow
PawarOn System
(WO init.
o routings
)
Y !
¥ +
!
Syatam K
PO s ROM and
Errar Initinlization £ Ibi.nary PG
Conditions = ROMINI init, roulines
Parser EIE“”“E Interprater
nop ‘
//f ‘t\ -* \’\\
» Y ¥ e
HOM and System ROM and Sysiem
binary pam. gt — | Parse bimary pam, L | runtime
parsa routines runtima routinas
routines routines
System flow is shown by the chart above. In general, loading and
running a program, or executing a calculator mode statement, will

require execution within the following areas:

Lad

Power—-on Initialization: When the computer initially powers-up, it
performs a seguence of operations: performs a self-test, accesses
and resets any interface modules, reserves memory for later use,
allows any ROMs to reserve memory, and returns to the system.

Executive Loop: External stimulus (such as a keybeoard interrupt) and
changes within the computer (such as an error condition) will cause
the executive loop to call the appropriate routines to take control
at the right time.

Parser: Parsing occurs when [END LINE] is pressed after a
line or calculator mode statement has been typed. Parsing is the
changing of ASCII code inte tokens. The parser first searches the
ASCII tables in any resident binary programs for a keyword match,
then the ASCII tables in any external ROMs, and finally the system
tables. This makes it ponssible to redefine system keywords.

program

Interpreter: The interpreter actually runs a program or
calculator mode statement by
time routines to execute them.

gxecutes a
fetching tokens and calling the run

Section 3: Operating System

In addition, there are two other areas which may be called:

Initialization: At many times, including power—on,

the system calls routines for initialization.
routines are called through the ROMINI
initialization
routines in the resident binary programs
initialization routines called by ROMINI can look at

eto.,

system

location

that

to see why they were called.

Initialization routines are

called before,

RESET,
routine; the system
last. ROMFL is

during, or

condition occurs, depending upon the following conditions:

after

SCRATCH,
Initialization
polls
routines first, ROM routines second, and the
RaM

a

ROMFL Meaning Initialization Routines Called
i Power—-0On After system initialization.
1 RESET After system reset.

2 SCRATCH Before scratch.
3 LOADE IN After loadbin.
4 RUN Before execution begins.
INIT After allocation done.
5 LoaD Before load.
& STOP, PAUSE During.
7 CHAIN After.
1@ Allocate token class>5é During.
11 Deallocate token class>56 | During.
12 Decompile token classs>56 | During.
13 Program halt on erraor During.
.

When errors occur, the system generates the proper warning or error

message.

Section 3: Operating System

Interpreter Loop

The interpreter loop fetches the next token, processes it, and passes
control to the respective run time code. When the run time code has
been executed, control returns and the interpreter continues with
another token.

A token is an ordinal into a table of addresses. The address table is
made up of two-byte addresses. To find the actual address, the token is
doubled, then added to the base address. This changes the ordinal into
an offset pointing to the current address.

Address Table Runtime Routines

Z-hyte

(Token = 2} + Base Address s

2:byte

_———]

|

-~ I address.
|
l address.

2-byte

address.

Section 3: Operating System

INTERPRETER

SETPCR (PTR1)
TO ADDRESS
IF1STTOKEN

Y

SET
TOS=R12

!

HELEASE
TEMPORARY
MEMORY

—_—
3

GET NEXT
SYSTEM TOKEN

Y

DOUBLE
IT

Y

ADD TO BASE
ADDRESS OF
AUNTIME TABLE

Y

GET RUNTIME
ADDHRESS
FROM TABLE
————— = RUNTIME
i s e ROUTINE

— — —p= Bit7of R17 indicates an arror
has occurred or the routine that

_ __called the interpreter requested
control be returned after tha
next token.

INTERPRETER LOOP

Section 3: Operating System

3.4 Allocation and Deallocation

Allocation is the process of reserving and assigning memory for program
variables. The three modes of allocation are:

e If the program line is g dimension statement, the entire line is
allocated before execution continues.

e If the current token being allocated is the start of a user
defined function (DEF FN), then allocation will continue for the
duration of the definition (until the FN END} before execution
will resume.

e All other tokens are allocated one at a time as they're
encountered.

3-16

Section 3: Operating System

The class of a token determines if the token needs to be allocated.
following diagram

allocated:

0

100000

RUNTIME

ROM

SYSTEM
RAM

EXTEANAL
ROMs RAM

BINARY
PROGRAMS

GOSUB/RTN
STACK

" ASSIGN
BUFFERS

FOR/MEXT
S5TACK

TEMP MEMORY

CALC MODE
VARIABLES

AVAILABLE
MEMORY

CALC MODE
STATEMENT

SUB 2 VARS.

SUB-PROG 2

LOCALVARS.
FORSUEBN1

SUB-PROGRAM
MNUMBER 1

LOCALVARS.
FOR MAIN

shows how

MAIN BASIC
PROGRAM

COMMON

memory looks

FWBIN

LWAMEM

NATRTN
RTMNSTK

CALVRB

LAV AIL

SAVPTZ

NETMEM

EOVAR

BOVAR

FWCURR

FWPRGM

FWUSER

in a

The GOSUB/RTM stack is for the
BASIC program niot for assembly
language, NXTRTN points to the
naxt RETURN address on the stack,

Each ASSIGN buffer takes 284 bytes

TEMPF memory is released by the
system at the end of each line of
aprogram and whan an @ token
{statement concatenation) is

encountered.

Both the RUM and the COMNT
commands set LAVAIL equal

to CALVRB, so during the
running of @ BASIC program,
they will always be equal,

and there will be no CALC mode

variahle

It a CALC mode statement has
been enterad and is executing,

it will begin at NXTMEM — 1

and end at SAVPTZ, Otherwise,
SAVPTZ will be equal 1o NXTMEM,

MXTMEM points to the last byte
of the BASIC programs {or sub-

programs).

EOVAR points to the last byte
of tha variable space of the
current active BASIC program
and BOVAR points to the

[first byte] + 1

FWCURR points to the hirst
byie of the currently active

program,

FWPFRGM points to the first
byte of the MAIN BASIC program

FWUSER points to ane higher
than the highest address in

MEMmory

program that

The

has been

Section 3: Operating System

Unless you have created a token whose class 1is greater than 56,
allocation is handled by the computer. Because a program is allocated
in segments, a memory overflow could occur after you are well inte your
program.

The system executes the BASIC program starting at the highest address.
The line of BASIC code

1é A=B

would be parsed into this stream of bytes:

#16 END OF LINE TOKEN

pLe STORE SIMPLE VARIABLE TOKEN

102 B, THE VARIABLE NAME

ge1 LEN OF VARIABLE NAME

200

pao 3 BYTES RESERVED FOR ALLOCATION TIME ADDRESS
BaG

pa1 FETCH SIMPLE NUMERIC VARIABLE TOKEN

191 &, THE VARIABLE NAME

#al LEN OF VARIABLE NAME

2o

Bﬂﬂ] 3 BYTES RESERVED FOR ALLOCATION TIME ADDRESS
aag

g21 STORE SIMPLE NUMERIC VARIABLE TOKEN

el6 LEN OF LINE (16 OCTAL BYTES FOLLOW)

g26

Bﬂﬂ] BCD LINE NUMBER 18

pag

Token number 21 (and tokens such as 1, 2, 3, 22, and 23) is immediately
followed by three bytes which are used to contain the relative address
from the first byte of the currently active program (FWCURR). Since the
variable storage area for BASIC programs is at a lower address than the
program, this relative address will always be negative (that is, the
most significant bit of the address will always be set). Therefore, if
the most significant bit is @ then the system knows that the current
token has not yet been allocated. In this case, the allocator would be
called, which would search through the variable storage area for the
current variable. If found, the allocator would ecalenlate the correct
relative address and place it where the three 8's are following the 21
token. If not found, the allocator would create a storage area for it
in the space allocated for variable storage (EOVAR), then calculate and
store the relative address after the number 21 token. Execution would
then continue.

3-12

Section 3: Operating System

Since the variable name could be long or short, the length of the name
and the ASCII characters for the name immediately follow the address.
The length of the name and the ASCII characters will be skipped at
execution time, similar to the way a comment is skipped.
Line numbers are handled in a similar manner. The BASIC code

18 GOSUE 1p@

would be parsed like this:

ale END OF LINE TOKEMN

gas

@ﬁl} BCD LINE NUMBER 0OF DESTINATION
S

133 GOSUE LINE NUMBER TOKEN

BEs LEN OF LINE

a2p

ﬂ@ﬂ} B8CD LINE NUMBER 18

gad

Since line numbers are only five digits long, the most significant bit
will be @ if the line is not allocated. If the 1line is allocated the
address will always be negative and the most significant bit will be
set. All line numbers are converted into addresses relative to FWCURR
{the first byte of the currently active program) at allocation time.

3-13

Section 3: Operating System

Line labels are handled in a way similar to variable names. The BASIC
code

19 GOSUB [linelabel]

is parsed as;

Ale END OF LINE TOEEN
154 1
145 =)
142 b
141 a
154 1
145 =
156 n
151 i
114 L
g1l L
BHH}

EM OF LINE LABEL

gpg
5151Y]
2748 GO5UE line label TOEEN
@17 LEM OF LINE

3 BYTES RESERVED FOR ALLOCATION ADDRESS

g28
BBB} BCD LINE NUMBER 1@
aga

3-14

Section 3: Operating System

A program is deallocated while you are typing in lines or while it is
being edited. When a BASIC statement is typed and [END LINE] is
pressed, the computer deallocates the program if it has not already been
donte. Program variables are held as names rather than addresses. This
diagram shows memory when a program is deallocated:

DEALLOCATED
0 RO/
100000 SYSTEM
RAM
RAM STOLEN
BY EXTERMNAL
ROMS
FWEIN is the lowest address
BINARY o R FWEIN a user can normally access
PROGRAMS from a BASIC language program
GOSUB/RTN - — LWAMEM / NXTRTN
STACK
CALC MODE - CALVERE/RTNSTK
VARIABLES
] The operating stack (R12)that
- LAVAIL was in availabla RAM an thea
HF-B3/B5 15 now in the system
) RAM and s of fixed length,
available

The pointars shown usually
point ta the (FIRST WORD] + 1
memaory or to the (LAST WORBRD) of the
particular block of memaory
they are associated with.

- PTR2
MEW LINE
- NXTMEM
nﬁigﬁﬂnnnsrch FWUSER 15 one address highear

than the highest address axisting
inthe current configuration of
the machine

o — FWUSER/FWPRGM /FWCURR

3-15

Section 3: Operating System

3.5 Executive Loop

After power-on initialization, the executive loop portion of the system
takes control. The executive loop examines CPU registers R16 and R17
for changes in the status of the computer, listens for external
communications, and takes the appropriate actions based upon the
information received. The current status information (CSTAT) is kept in
register R16 and the external communication flags (XCOM) are kept in
register R17, As long as registers R16 and R17 are both zero, the
system is idle. The executive loop flowchart is shown on the next page.

3-16

Section 3: Operating System

15
A1 0DD
T

M
T ¥
ALLOCATE SET TE‘
| -
¥
ERRORS 458 =
? INTEAPRETER
N -
J5B =
INTERPRETER
! |
CALC N

MODE IN INPUT
¥

INPUT
COMPLETE
]

SETMG=2
[RUM)

;

FINISH
INFUT

—

T

CLEAR BiT 1
W AT

I
1

SET INPUT

COMPLETE BIT

{BIT 1) IN A1T

HAMNDLE
KEY

L

CLEAH SERVICE
RAEQUEST BIT
IN RIT

PRIMTALL
MOUE

OuTPUr T
FPRINTER |15
DEVICE

15 R1E=4
{IHPLET
COMPLETE

RERORT
ERAQR

CLEAR CETAT
CLEAR ALL BUT

SVCHEQIN RAT

TALC
MOOE PEHDING

=

GET
SNCWRAD

REYBEOARD
]

ERADA T
¥

INPUT
COMPLETE

SETR1G6=T
JRLIN 1N RIDOLE
OF LINE)

!

CLEARBITY
IN A1T
(INFPUT

COMPLETE)

SERVICE
CLDCE

V

CLE&AR BIT
IH SNCWRED

|

CLEARSEAVICE
REQUEST BIT
(BT 241N RAT

—

REFDAT
ERROR

SETHROMFL
=11
|PGM HALT
oM ERRGA)

T

JEB8 =
AOMINI

SETRiG=10

CLEAR ALL

BUT 8IT 4
aF Ri7

EXECUTIVE LOOP

Section 3: Operating System

3.6 Interrupts

When there is a change in status and the system is no longer idle, CSTAT

(R16) indicates the computer mode of operation, according to the wvalue
stored there.

CSTAT
Value Current Status
& Idle.
1 Calculator mode execution.
2 Program is running.
3 Mot used.
4 Idle during input statement.
] Calculating during input statement.
B Mot used.
7 RUN in middle of a line.
B=255 Mot used.

If execution halts, the system needs te know what caused it to halt and
how to handle it. Each of the eight bits in XCOM (R17) have a different
meaning asscciated with it. The service request bit is the only bit
directly affecting interrupts.

HCOM

Bit Set Execution Halt

76543210

X End of calculator mode.
4 Input complete.
b4 Step mode.
X Trace mode.
X Service request (any interrupt).
x Immediate set.

* Error set.
® Break ("or" of bits § and 6).

Section 3: Operating System

One of the controlling devices on the internal communications bus will
generate an interrupt to begin execution. An interrupt will set bit 4
in R17 (XCOM) and a bit in a memory locaticn which is used to keep track
of the cause of an interrupt (SVCWRD). The executive loop Kknows that

the interrupt has occurred (from XCOM} and which device caused the
interrupt {(from SVCWRD).

SVCWRD Bit Set Type of Interrupt

765432148

% Keyboard interrupt.
X I/0 interrupt.

* Timer 1 interrupt.

Timer 2 interrupt.

£ Timer 3 interrupt.

b Special interrupt.
A Not used.
b o Mot used.

Whenever an interrupt occurs, the CPU expects the interrupting device to
send a peinter to an interrupt handling routine in a table of addresses.
This pointer is a one-byte guantity and the two bytes that it points to
in memory indicate the starting address of the service routine. If
multiple interrupts occur then the first interrupt is handled and the
rest are disabled.

The service routine pointers are located at addresses 8@ thru 25 in
memory .

Table of System Interrupt Pointers

ADDRESS CODE FUNCTION
dE0RaE DEF STARTX Power—-on wvector.
geeaez DEF SPaRP Epare hook B.
pRgand DEF KEYSRV Keyboard.
AEEEAG DEF SFARR Spare hook @.
ApEe1La DEF CLESR® Clock @.
peERL2 DEF CLESR1 Clock 1.
Pgppla DEF CLESR2 Clock 2.
Fe@dleo DEF CLESR3 Clock 3.
peEe2a DEF IRQ28@ [/0 modules.
AEERz22 DEF SPARL Spare hook 1.
gpaaz24 DEF SPARL Spare hook 1.

3-19

Section 3: Operating System

An interrupt may be caused by the keyboard, a timer, an I/0 module, or a
special device. Keyboard interrupts are handled using KEYSRV and the
character editor (CHEDIT). If the clock causes an interrupkt, an ON
TIMER routine is called. An interrupt from an I/0 module is handled by
the IRQZ8 and IOSP hocks, and special interrupts must be handled by the
spare interrupt routines SPAR@ and SPARL from other hardware.

Programmer created interrupt routines may be handled by taking ceontrol
of certain memory locations accessed by the executive loop or by taking
contral of the interrupt service hooks S5PARH, SPAR1, KYIDLE, or IRQZ{.
The interrupt service hooks are accessed prior to the executive loop.
Therefore, these locations may bypass the executive loop. Jumps to
these locations (hooks), cause the instructions located there to be
executed. Initially, only a RTN instruction is stored at each of these
locations, so control immediately passes back to the executive loop.

When an I/0 device interrupts the system, a jump is made to IRQ28 before
control passes to the executive loop. This gives the I/0 interrupt
routine the chance to bypass the operation of the executive loop, taking
control more efficiently.

The executive loop always performs these functions: tests CSTAT, tests
XCOM, and jumps to RMIDLE. If an interrupt has occurred from the
keyboard, a jump is made to CHIDLE. When an I/0 interrupt occcurs a jump
is made to IOSP, provided that the proper bits in XCOM and SVCWRD are
set.

When an interrupt occurs during the execution of a program, the CPU
finishes the current instruction, saves the program counter (R4-R5) on
the KR6-R7 stack, and acknowledges the interrupt. The device puts a
painter to the address of the service routine on the bus, and the CPU
loads the service routine address into the program counter (R4-R5).
This is effectively a subroutine jump teo the service routine, hecause
the return address has been saved. The status of the CPU and the
contents of any registers that will be wused in the service routine must
be saved and restored from within the routine. This is important
because an interrupt could occur between the execution of an instruction
which sets the status indicators and an instruction that depends on that
status.

3-20

Section 3: Operating System

37 Hooks

A binary program or a ROM can gain control of the system using RAM
hooks. GSome are accessed directly by the executive loop and some by
routines that branch from the executive loop. The four types of hooks
are:

 Language hooks: Allow vyou to create new BASIC keywords or
redefine existing ones.

e General hooks: Allow you to take over variocus parts of the
operating system by storing subroutine jumps to a binary program
or ROM routine at specified RAM locations.

o Initialization routines: Called by the system, external ROMs, and
binary programs at initialization time. An initialization routine
can steal BRAM, change flag status, or gain control of the
aoperating system.

e Error message table: Allows a binary program or ROM to flag
specialized error conditions with custom error messages.

Language Hooks

With language hooks the binary program or ROM can define new keywords,
functions, or auxiliary tokens. Because the system first polls the
resident binary program and then all external ROMs, a binary or ROM
pregram can take over or supersede the system tables.

General Hooks

To provide for each general hook, the system at certain times executes a
subroutine jump to a specific RAM location. During normal operation
each of these RAM leocations contains a RTN or is otherwise idle. By
placing a Jjump tec a binary program or ROM at the hook locaticon, the
program or ROM gains access toe the operating system. It is the
responsibility of the external program writer to determine how to use
the hook and how to avoid conflict with other usages of the hook. HNo
support is supplied by the system.

Because support is not supplied by the system before calling any of the
RAM hooks, any binary program base address might be in BINTAB when the
system calls a hook. You must ensure that the correct base address is
loaded into BINTAB before a hook is taken.

3-21

Section 3:

The following code stores

nses

**Initialization

IMIT

*#*Hpook
INIRTHN
HOOK

#%Store Base Address Herek*

OURBAS

Unless

otherwise
Flowcharts are provided for selected hooks

Operating System

Routine**
LDBD R34,=ROMFL
BIN

CME R34,=3

JMZ INITHRTN

LDMD R34, =BINTAB
STMD R34, %34, 0URBAS
ADM R34, =HODE

STM R34,R45

LOB R47,=236

LDB R44,=31c
STMD R44,=CHIDLE
Foutine*#*

RTN

BIN

DRP R34

BYT 251

BSZ 2
STMD R34, =BINTAB

noted,

a copy of the binary base

each

address for future

See why INIT routine was called.
Binary mode necessary for CMB and

ADM instructions.

Is a binary program being loaded?

If no, return.

If yes, save the binary base address.
Store it in the program.

Make hook routine address absolute,
Make a copy of the address to store

in HOOE.

Load the opcode for return instruction.
Load the opcode for a JSB instruction.
Store R44-R47 inte CHIDLE.

Done.

Entry to hook routine.

Set the DRP to R34,

Do a LDM R34,= instruction.

Base address is stored here.

Load the base address into BINTAB.

general hook 1is seven bytes 1long.
in section 8 of this manual.

General hooks are supplied at the following points:

BaM Mame

Location

Function

CHIDLE

DCIDLE

DGHOQK

183678

184PB35

1B34@44

Character editor intercept.

System decompiler hook
time.
want to let the system have a
decompiling,
couple of return addresses.

If the PLOTTER IS select code is

called at entry
take this hook and don't
chance at
you need to discard a

If vyou

then

one or

IMERR

183724

two and a DIGITIZE command is executed,
this hook will be called so software that
has been JIoaded can digitize off of the
CRT.

Used to expand the IMAGE statement. This
hook is called when there is something in
an IMAGE statement that the syskem
doesn't recognize.

Section 3: Operating System

RAM Name | Locatiaon Function

I05FE 183652 1/0 service pointer. Used by I1/0 and
mass storage ROMs.

IOTREFC 183643 General output hook. If the select code
of the CRT or PRINTER IS device is not 1
or 2, the DISP or PRINT will go to
IOTRFC.

IRQ20 183742 The CPU wvectors to IRQZ2P when an I/0
module interrupts.

KYIDLE 162425 Keyboard intercept. Polled whenever a
key is pressed.

MSHIGH 183764 High level hook that alleows modification
of mass storage commands.

MSLOW 183773 Low level hook to allow driving of mass
storage devices not already supported by
the system mass storage ROM.

MSTIME lg4@a2 TIMEOUT hook in the mass storage ROM.

FLHOOK 183661 If the PLOTTER IS select code 1is other
than one or two, PLHOOK gets called. The
contents of R3M-R31 determine what
routine is executed.

PR5IDL 1P3733 Parser intercept. Should be taken
anytime Yyou want to alter the way
something is parsed by the system or if
the system can't parse something.

DEF SPARg| 194011 One of the two spare hardware hooks
fcurrently used by the system monitor).

SPAR] 194022 Second spare hardware hook.
STRANGE 183715 Parameters for parsing functions are

uswally numeric, array, or string types.
When the system encounters a parameter
not of ona of these types, it iz of type
strange. The STRANGE hook is called and
parsing this parameter 1is up to the
programmer .

3-23

Section 3: Operating System

The hooks BMIDLE, CHIDLE, and IOSP are directly accessed by the
executive loop. The following code shows how to take control at these
hooks.

RMIDLE

Starting at the RAM location 1@3786, room is allowed to store the
following 7 bytes of code:

JSB =ROMJSE 3 bytes - used to select external ROM (if
needed) .

DEF LABEL 2 bytes — the address of the routine that will
be written by the programmer.

VAL ROM$E 1 byte - the number of the external ROM that
will be accessed using ROMJSB.

RTH 1 byte - return to the executive loop.

Since ROM @ is usually selected when the system is in the executive
loop, external ROMs must go through ROMJISE in order to be selected.
Binary programs need only store the following 4 bytes:

J5B =LABEL 3 bytes - subroutine jump to programmer's
routine.
RTH 1 byte - return to the executive loop.

The following two pileces of code are examples of how to take
control of a hook from a ROM and from a binary program.

From a ROM:

LM R4l,=31a Opcode for 'J5B ='

DEF ROMJISE Address of the ROMJSE routine

DEF LABEL Address of the hook routine

VAL ROM# Number of the external ROM

RTN Return to the executive loop.

STMD R4l,=RMIDLE Store the subroutine jump to the
hook routine LAEEL at the EMIDLE
location.

Since the DRP is set to R4l in the first instruction, seven bytes will
be loaded, which will include the 316 (JSB =),the DEF ROMJSB, the DEF
LABEL, the VAL ROM#, and the RTN. The code itself will not be executed
until the executive loop accesses RMIDLE.

3-24

Section 3: Operating System

From a binary program:

LDM R44,=31¢ Opcode for "JSB ="

DEF LABEL Address of the hook routine

RTHN Return to the executive loop.

ADMD R45,=BINTAB Finds the absclute address of the
lakbel LABEL.

STMD R44,=RMIDLE Store the subroutine jump to the
ook routine LABEL at the BMIDLE
location.

Here, +the 316 opcode, the DEF LABEL, and the RTN are leoaded into
R44-R47, BINTAB can be safely added to the address LABEL, even though
LABEL is a two-byte address and BINTAB is a three-byte address. This is
because the most significant byte will be added to the RTN and the most
significant byte of BINTABR is always zero and will not affect the RTN
opcode. The absclute address of LABEL will always be less than 177484,
the limit of binary program memory.

The normal method of returning to the system from RMIDLE is to execute a
RTWN instruction. Nothing will be on the R6-R7 stack except the return
addresses from BMIDLE.

CHIDLE

When a key is pressed on the keyboard, the keyboard controller will
generate an interrupt request which causes control to pass to the
key-service routine. The key-service routine will immediately execute a
reset when the [RESET] key is pressad. If no other key is being
processed at the same time, the keycode is stored in the location called
KEYHIT. The flags are set in XCOM and SVCWRD that indicate that the
keyboard is awaiting service for its interrupt. The keyboard controller
is reset, and the key service routine returns to whatever it was doing.
The next time execution returns to the executive loop XCOM is checked
for any pending service requests. If there are any pending requests,
the executive loop checks SVCWRD to ses which device needs servicing.

In this case the keyboard 1is the interrupt device, and the executive
loop will call the character editor (CHEDIT). CHEDIT will do three
things before processing the character input:

1. &et binary arithmetic mode.

2. Clear the E register.

3. Jump contrel to the location CHIDLE.

At this point you can check the contents of KEYHIT to determine if you
want to return to the system or handle the key.

3-25

Section 3: Operating System

In order for a binary program to handle the key you must pop two return
addresses off the R6 stack to insure returning to the executive loop and
not to return to CHIDLE or CHEDIT. Y¥You must also execute a JSB =E0J2.
This routine clears the bit in SVOWRD which indicates the keyboard needs
servicing, and 1if no other devices have requested service, clears the
service request bit in R17.

The status of the E register should alsoc be checked before returning to
the executive loop. The E register 1s cleared by CHEDIT before calling
CHIDLE and expects it to be cleared before returning back to CHEDIT. If
the E register is nonzero when you return, it assumes that the key
pressed was [END LINE] and tries to parse whatever is 1in the input
buffer (INFBUF).

The following section of code illustrates how to take over CHIDLE:

LM R36, =KEYCHE Load address of routine to handle
CHIDLE.

ADMD R36, =BINTAB Add value of BINTABE for an absolute
address.

S5TM R36, R45 Store desired address in R4%5 and Rde.

LDB R47, =236 Load the opcode for HTN.

LDE R44, =316 Load the opcode for JSB.

STMD R44, =CHIDLE Store it all (multi-byte store) to

CHIDLE hook.

I05F

When an interface meodule generates an interrupt, the CPU jumps control
ko location TRQZ28, which is usually takem by the I/0 ROM. If IRQZ20 has
not been taken, the interrupt is ignored. The IOSP interrupt hook is
accessed through the executive loop. The I/0 ROM IRQ20 routine does
minimal interrupt processing and sets the CSTAT and XCOM flags to
indicate that an interrupt has occurred. This causes the executive loop
to jump to IOSE, where the I/0 ROM finishes processing the interrupt.
If you take IDSP you must clear the service bit in CSTAT before
returning.

Initialigaticn Hooks

A routine called ROMINI 1is called on several occasions to perform
initialization in external programs. Power-on, alloccation, reset,
deallacatian, and executive losp hooks are times when the bhinary program
may nead Lo initialize special wvalues. Whern this occurs, the
initialization routines in binary programs and BOMs are given control.

Section 3: Operating System

A parameter is passed to the ROMINI routine through ROMFL. The
occasions and corresponding ROMFL values are:

ROMFL Value Function
4] Power on
1 RESET key
2 SCRATCH
3 LOADBIN
4 RUN, INIT
5 LOAD
6 STOP, PAUSE
7 CHAIN
1@ Allocate token with class greater than 56.
11 Deallocate token with class greater than 56.
12 Decompile token with ¢lass greater than 56.
13 Pregram halt because of an error.

These calls to the ROMs and binary programs allow these programs to
initialize or otherwise keep track of operation. For instance, if a ROM
needs to reserve or steal memory permanently, it would check for ROMFL =
8, and reserve memory only when that is true. Another example is that
during RESET the I/0 ROM might want to deallocate buffers.

During initialization, a binary program or ROM should never destroy any
CPU registers below R2@. Similarly, no initialization routine should
use CPU registers other than R34-R37 until it is verified that the value
of ROMFL is not 18, 11, or 12. Once this is verified, all CPU registers
numbered higher than 20 may be used.

Error Handling

When an error is detected inside the executive loop, a system routine
immediately reports the error and waits for the error to be corrected.
The first 18 (octal) error numbers are default math errors which do not
stop execution after the warning is reported. The routine which has
found the error supplies a default walue, and the processing continues.
The defaults must be turned off in order to stop the execution.

The routine that displays the warning message, or sets the error flags
if no other errors have occurred begins at location ERROR. When setting
an error, the subroutine will use the next byte after the reéturn address
as the error number.

Section 3: Operating System

The subroutine ERROR has three basic parts to its operation:
e Initializing the error information.
e Interpreting error status.
e Carrying out the appropriate action.

ERRUR saves the address that it will return te in R36-R37, increments
it, and stores it on the R6-R7 stack. Then it finds the error number
which is stored at the return address and puts it into R20-R21 after
saving the previous contents. Checks are made to determine the proper
action for the routine. If an error has already been found, then the
routine restores the previous contents of the registers and returns
immediately. If the error number is less than 12 (octal) or greater
than 366 (octal), then the warning for the error is immediately
displayed, and the contents of the registers restored before returning.
If 'ON ERROR' has been declared and a program is running or if error
defaults are off, then the error number, line number, and ROM number (if
any) are stored, bits 6 and 7 in XCOM are set to 1, and the previcus
contents of the registers are restored before returning.

A subroutine jump to ERRCR+ is equivalent to a subroutine jump to ERROR
followed by a return.

An error condition tested by an assembly language program would go
through the following steps:

1. The assembly language program finds an error and calls the system
routine ERRCR.

2. ERROR checks to see that no other errors have occurred which
haven't been reported vyet, in which case ERROR returns without
doing anything (because only one error can be in process at a
time). Otherwise, ERROR sets the error flags in XCOM and in other
BAM locations such as ERRORS, ERLIN#, and ERNUM#.

3. Control returns to the assembly language program which returns to
the system interpreter.

4. The interpreter will check the error flag in XCOM and, noting that
it is set, will exit from the interpreter loop back to the main
body of the executive loop.

5. The executive loop will see that XCOM is not @ and will see that

an error has occurred and will jump to the error-reporting routine
HEPORT.

I=ZR

Section 3: Operating System

f. REPORT checks to see if ON ERRBOR has been declared and a program
is running. If so, it sets CSTAT to 'run in middle of line',
changes the BASIC program counter to the next line and returns to
the executive loop without printing the error message. If a
program is not running or ON ERROR has not been declared, then
REPORT prints the ertor message and returns Lo the executive loop.

7. The executive loop checks CSTAT to see if 'run in middle of line'
is set. If 8o, control returns teo the interpreter, and the
program continues running. Otherwise, ROMFL is set to 13 and
ROMINI is called, which is the routine that calls initialization
routines in all the external ROMs and the binary programs. When
ROMINI returns to the executive loop, CSTAT is set to idle mode.

3.8 Extended Memory Controller

Addresses @ to 177777 (octal) can be directly accessed using 16-bit
addressing. The extended memory controller (EMC) is used to access
memory locations above 177777. Communication with the EMC, as with the
CRT and keyboard controllers, is through the I/0 addresses 177480
through 177777. Access to these locations above 177777 1is through two
pointers, PTR1 and PTRZ.

The pointers determine where in memory an access will occur, and since
they must access memory locations greater than 177777, they are three-
byte gquantities. To set the contents of the pointers, a direct store
must be performed. For example, STMD R55,=PTRZ will take the three
bytes in RE5-RE7 and move them to PTR2Z 1in extended memory. To store
data at the desired location in memory, an indirect store must be
performed. For example, STMI R32,=PTR2 will put the two bytes contained
in R32, R33 at the address stored in PTRZ.

The EMC pointers may be used te create stacks, with the special 1/0
addresses provided for each pointer. The two pointers are entirely
independent of each other. Although PTR2 is used in the feollowing
examples, PTR1 and PTRZ function the same.

Each pointer has four I/0 addresses: PTR1, PTR1-, PTRl+, PTR1-+, PTRZ,
PTHZ=-, PTRZ-+. PTR1 and PTR2 act as pointers to memory and must be
given a value in order to use the other functions. If data is stored at
PTRZ, it fills the memory starting at the address stored in PTR2Z, moving
toward the higher numbered addresses.

3=29

Section 3: Operating System

PTRZ2- acts as a decreasing stack pointer. A LOAD or STORE through PTR2-
will first decrement the pointer by the appropriate number of bytes
The LOAD or STORE operation will then be performed, leaving the pointer
at the new location. '

LDM R45,=1@§2,233,114 STMI R45,=PTR2Z-

BEFORE AFTER
1 102 +PTR2
2 233
3 114
4 «PTR2 4
5 5
6 6
7 7 LDM R45, =102, 233, 114
8) STMIR45, = PTR2—

PTR2+ is an increasing stack pointer which will perform the load or
store operation at the location pointed to by the pointer, and then will

increment the pointer after the load or store operation by the
appropriate number of bytes.

LDM R45,=182,233,114 STMI R45,=PTRZ2+

BEFORE AFTER
L L LDM R45, =102, 233, 114
< 2 STMI R45, = PTR2+
3 3
4 +=PTHZ 102
5 233
6 114
7 7 +«PTR2
8 8

When the CPU accesses an I/0 address directly, it causes the controller
to respond to the address. Each of the controllers is linked to the bus
and monitors the information that is being passed from memory to the
CPU. For example, the direct access instruction LDBD R32Z,=CRTDAT will
fetch an address from memory. If this address is one which the

controller must use for an operation, the controller will send an
information byte te the CPU to tell it what to do. In this case the CRT
controller will send the CPU the current status of the CHT.

The EMC must constantly monitor the machine code instructions being
fetched by the CPU, since the DRP setting determines how many bytes are
to be used in a given operation. Whenever a DRP instruction appears, it
must store that information to keep track of the current DRP setting.

3-38

Section 3: Operating System

This can be done with PAD (restore status) and SAD (save status)
instructions. SAD pushes Lthree bytes onto the R6 stack containing
information about the ARP, the DRP, and the status flags. PAD restores
this information using these bytes.

Because of this method of keeping track of the DRP setting, there are
cases where the EMC cannot know bthe DRP setting which include:

e After a PAD instruction: Since the PAD instruction restores
status and the ARP and DRP settings, the EMC is not aware of what
the DRP setting is until ancother DRP instruction is executed.
Therefore you should avoid using the following or similar code:

PAD Restores status, the ARP, and DRP
LDMI R#,=PTRZ Fetches bytes from extended
memory. The CPUJ assumes the
number of bytes is determined
by the PADs DRP. whereas the
EMC iz wsing the last ORP
instruction.

e When the DRP is set indirectly by the contents of CPU register
R@, as in the following case:

LI R*,=PTH2- This sets the DRP according to the least
significant six bits of R@, which the
EMC knows nothing about.

Because of the first situation, all interrupt service routines must be
written to save and restore the contents of the registers used before
returning to the routine that was interrupted. Interrupt service
routines are those that are called immediately when a hardware interrupt
agcours, such as a key being pressed or an I/0 module needing attention.
Because the interrupt is usuwally granted almost immediately by the CPU,
interrupts can occur between any two instructions (as long as interrupts
are enabled). Before restoring everything, you must do the following to
solve this problem:

Fop the SAD status information off of the RE stack to get a copy.
Push a copy back aon for the eventual PAD.

Figure out what the actual DRF needs to be.

Put the appropriate DRFP instruction into RAM along with a RTHN.
Restore a&all the registers and status (PAD).

Jump to the DRP and RTN instructien so the EMC will get its DRP
pointer back to the right value.

3-31

Section 3: Operating System

There is another I/0 address that the EMC listens to. If you store a 1
to RULITE ({177704), the power light will start blinking. If you store a
#§ to that address, the light will stop blinking. This light blinks when
a BASIC program is running, or when an HP-85 BASIC program 1is being
translated, or when a program i{s temporarily halted waiting for input.
It normally stops blinking when program execution is complete, {f
program execution is halted by an error, or if the program is paused.

3.9 Parsing

When you type in a BASIC program as 3§ series of ASCII characters it is
translated (parsed) and stored internally as a stream of tokens and
associated data and addresses. The tokens represent the BASIC reserved
words, functions, operators, and punctuation. The data bytes represent
the constants, wvariables, and line number references.

Parsing begins with the Iine number or the £irst character of the
statement and moves to the right, processing each character and space.
Multiple nonguoted spaces are ignored during parsing except those
occurring at the beginning of a program line. As a line is parsed, it
is checked for syntax errors, changed to RPN (Reverse Polish Notation),
and converted into tokens which are stored internally.

Each token consists of a single byte, and can represent a single
keyword, such as LET or PRINT. Tokens 378 (ROM token) and 371 (binary
program token) are used to allow extensions of the system by means of
external ROMs and binary programs. & table of system tokens can be
found in section 8. A5CII codes can be found in the HP-87 owner's
manual.

Example: In parsing the line

18 LET A = B * SIN (45},

the system produces the following tokens in the order shown.

G Tl s

Section 3: Operating System

Tokens ({Octal Value) Comments

16 End of statement.
18 Store numeric walue token.

52 Multiply token.

338 Sine token.

185 BCD 45 in integer format.
i (Refer to paragraph 3.9, Numeric
] Formats.)

32 Integer constant token.

182 ASCII "B", wariable name.

1 Length of wariable name.
@ Variable address space for allocation.
B (Refer to Format of BASIC Programs and
@ Variables, paragraph 3.12.)
1 Fetch simple numeric variable
141 ASCIT "a"
| Length.
@ Variable Address Space
@
4]
21 Store simple numeric wvariable token.
142 Let token.
25 Length of line in bytes.
28 Line number in BCD (two digits per
g byte except for most significant
4] byte which contains only one).

The extended memory pointer, PTR2, is used as the output pointer during
parsing. Tokens are stored indirectly to PTR2-. At the beginning of
the parsing process PTRZ is set equal to NXTMEM, so the parsed line will
pe built up 1in available memory at the end of the last BASIC program.
Parsing begins with the line number. This is loaded in BCD form; 28 is
loaded first, since it is the least significant byte.

Next is the size or length of the statement. During parsing this is a
blank place holder byte; STSIZE is a pointer to the place holder byte.
In order to find a match for the keyword LET, the system looks first in
keyword tables 1in the resident binary programs, then in any external
ROMs, and finally in the internal system keyword table. For this
reason, a binary program or external ROM can take over any keyword (that
is, a binary program can implement a custom version of PRINT, while the
preprogrammed PRINT is ignared). The extend register dindicates if the
token searched for has been found. Refer to the section on status
indicators in paragraph 2.3.

3-33

Section 3: Operating System

After parsing, if the statement was a program line, its tokens and
addresses are inserted into the program space at the correct logcations.
If it was an expression or calculator mode statement, the parsed code
remains at the end of the BASIC program and is executed immediately,
being discarded when execution is finished.

For further details of parsing operations and register conventions at
parse time, along with specific parse routines, refer to the system
routines which are listed in alphabetical order in section 8.

3.18 Decompiling

Proegrams ar statements are decompiled as they are listed. This is the
reverse process of parsing and compiling. Internally, it requires the
reconstruction of code as it was entered. The tokens which have been
parsed into RPN and distributed in the system are reassembled.

PTR]1 points to the input stream, which is accessed by loading indirect
through PTR1-. Input is then decompiled to an expression stack or an
cutput stack. The expression stack (R12) 1is wused teo reconstruct
expressions from RPN to their original form, and an output stack
(pointed to by R38) is used to buffer the output.

Since the tokens are arranged in RPN internally, the system decompiles
the tokens as it pushes missing operator tokens (@16} onto the
expression stack. These missing operator tokens are merely "place
holders" until the arithmetic operators can be inserted at a later step.

Unlike parsing, decompiling 1is not an operation to which a binary
program or ROM normally has access, since these programs are seldom
required to perform any unique operations during decompiling. In some
special cases the parse routines for a binary program or ROM may require
modification if a statement is to be decompiled correctly. But for the
most part, decompiling will not be a problem for the writer of binary or
ROM programs.

3-34

Section 3: Operating System

The system processes each token and uses its class (a component of the
token's primsry attributes) to determine how the token is to be
decompiled. Fellowing are some common c¢lasses and how they are
decomplled: ;

Class Type of Token Action i

4] End-gf-line Unstack.

1 Fetch wvariable To expression stack.

2 Integer To expression stack.

3 SEtore wvariable To expression stack.

4 Mumeric constant To expression stack.

5 S5tring constant To expression stack.

32 Subscript, such as, {) to expression stack if token

A(3) odd; otherwise (,) ta expressian
stack.

34 Dimension subscript [1 to expression stack 1if token

like, AS[] odd;
otherwise [,] to expression
stack.

36 Prints Unstack and push to output.

41 Other reserved words If : then unstack, ouktput
reserved word, then unstack.

42 Miscellaneous ocutput If , then push to expression
stack and unstack; otherwise
gutpukt.

44 Miscellaneous ignore Ignore.

58 Unary operator Insert after most recent missing
operator in expression stack.

5l Binary operator Replace most recent missing
operator in expression stack.

52 String unary operator Same as class 58.

53 String binary operator Same as class 51.

55 Numeric function -. Replace the most recent missing
operator with "," for each
parameter. Then insert function
name (at most recent missing
operator) and push onto
expression stack.

56 String system function Same as class 55.

333

Section 3: Operating System

The following example illustrates how decompiling occurs:

18 LET A=B*5IN (45)

After being parsed as shown, these tokens are decompiled into the output
stack and the expression stack as 1llustrated.

STEP TOKENS
) 16 EOL
a 0=
7 52+
& EELETY

3—-36

R12Z EXPACEEION
STaCK

16

SINE

45

16

16

S8

45

R12 EXPRESSION OUTPUT BUFFER

OUTPUT BUFFER STEP TOKENS
STACK
10 LET A=8"SIN45)
16
A
106 16
& 0 as
0 1]
32
10LET 16
a5
16
10z
1 a
4 a ;]
g 16
(1]
1
e
101
1 16
10 LET 3. a A
1] A
o
21
2, 142 LET
25 LEN
1 20
o LINE #
o
TOLET

10 LET

TOLET

10

Section 3: Operating System

3.11 Operating Stack

The stack to which R12Z points is wused for passing values in many
internal system routines. The formats of wvalues that are fetched and
stored during run time execution of certain specific tokens, as well as
the formats of numeric guantities are in this section.

Mumeric Formats

In internal routines, numbers popped off the R12 stack are eight bytes
long, so integer values are tagged with octal 377.

R40 E1 E2
A En M3
Undafined

R42 Mio M1
R43 Ma M3 R
R44 ME& M7 377 - |nteger Tag
R4b M4 MS_ o1 oo
R4B M2 M3 03 Dz
Ra7 Mo | M1 s D4

Real Tagged Integer

NUMERIC FORMATS (R12 STACK)

In the illustration, the byte above the number contains the octal
guantity 377. This 377 acts as a tag for the number, specifying the
quantity as an integer wvalue that is only three bytes in length. The
next four bytes popped off the stack are then undefined and are ignored
by the system. The numbers are shown as they would be if they were
taken off of the stack by the instruction POMD R4@,-R1Z. The tagged
integer is right justified so that the most significant digits (starting
with D4) are @ if unused. For tagged integers, the decimal point is to
the right of D@, the least significant digit. The real number decimal
poaint is hetween MO and MI1.

3=-37

Section 3: Operating System

A short numeric variable is formatted as follows:

R44 EO : E1

R45 M3 M4

R46 M M2

R47 0 0 s5M SE MO
EQ Most significant four-bit BCD digit of the exponent.
El Least significant four-bit BCD digit of the exponent.
Mg Most significant four-bit BCD digit of the mantissa.
M4 Least significant four-bit BCD digit of the mantissa.
5M Sign of the mantissa (@=positive, l=negative).
SE Sign of the exponent.

The decimal point is a&assumed to be between digit M@ and digit Ml. The
most significant nibble (four bits) contains the signs of the mantissa
and the exponent. The two most significant bits are zeroces.

Strings on the H1Z Stack

String values are passed on the operating stack as a two-byte length and
a three-byte address of Ethe next character higher than the first
character of the string. The first character is at the highest address
of any characters of the string. To fetch successive characters of the
string, the following code could be used:

POMD R45,-R1Z2 ! Get the address of $
STML R45,=PTRZ- ! Set PTRZ pointing to first character
POMD R36,-R12 ! Get the length of $

LOOP LDBI R3Z,=PTRZ- ! Get the next character

CM R36 ! Decrement length count
JHZ LOOP ! Logp until done

Operating Stack Routines

There are several system routines available to help you in parsing
various kinds of parameters for BASIC statements. These routines will
parse your BASIC statement into tokens that, at run time, will load the
B12 stack with the appropriate wvariable or parameter.

Section 3: Operating System

Following is a list of the routines that can be used and what they leave

on the stack:

NUMCON

NUMVAL

REFMNUM

STRCON

STREXP

STRREF

{8 bytes) Real or tagged integer.
{8 bytes) Real or tagged integer.

{3 bytes) Absolute address of wvariable wvalue.
(3 bytes) Absolute address of name of wvariable.
(1 byte) Head of variable.

{2 bytes) Length of string.
(3 bytes) Absolute address of string.

(2 bytes) Length of string.
(3 bytes) Absolute address of string.

Will parse both a normal string variable and a string
array warlable reference. There will be slightly
different information on the stack depending on which
of these it is. String arrays will have everything
that nonarray strings will have but string arrays may
alse have row, column, and dimension information if
the variable is being traced. You can tell if that
information is there by checking the trace bit in the
header byte which will come off the stack before the
tracing information would. You alse tell whether you
have a string array or normal string by inspecting
the appropriate bit in the header byte.

Nonarray Strings

{3 bytes) Absolute address of name of variable.

{1 byte) Header of variable.

{2 bytes) Maximum length of string variable.

{3 bytes) Absclute address of first byte of string
address.

{2 bytes) Mawximum length available to store into.
This will be different from the maximum
length if subscripts were used.

(3 bytes) Absclute address of first byte to store
inta. This will also be different from
the address of the first byte of the
string if subscripts were used.

3-39

Section 3: Operating System

NARREF

FORMAR

In all of the

Array Strings

The first three will only be on the stack if the
variable is being traced.

{2 bytes) Row of element.
{2 bytes) Column of element.
(1 byte) Dimension flag (8=2 dim., 1=1 dim.).

{3 bytes) Absolute address of name of wariable.

(1 byte) Header of variable.

(2 bytes] Maximum length of string wvariable.

(3 bytes) Absolute address of first byte of string
variable.

(2 bytes) Maximum length available te store into.
Different than maximum length of variable
if subscripts were used.

(3 bytes) Absaolute address of first byte to store
into. Different from the address of the
Eirst byte if subscripts were used.

Used when you wish to use a simple numeric wvariable
name to refer to an array wvariable. An example would
be:

MAT C=ZER

In this example 'C' refers to an array C, not ta a
simple numeric variable.

{3 bytes) Address of variable header. This address
is a relative address. The easiest way
Eo make it an absolute address is:

POMD. Re5,-R12
JSB =FETSVA

Used when you wish to refer to an entire array.
PRINTH# 1; C(),D(,)
(3 bytes) Absclute address of the first element of
the array.

{3 bytes) Absolute address of the array name.
(I byte) Array header.

above examples of stack contents, the bottom of the page

represents the direction of higher addresses. As you popped things off
the stack you would be removing things from the bottom first.

3-48

Section 3: Operating System

3.12 Format of BASIC Programs and Variables

The following figure shows how a BASIC program line is formatted:

[16 END OF LINE TOKEN

MISCELLANEQUS BYTES (ACTUALTOKENS OF CODE])

1-BYTE LENGTH OF LINE

3-BYTEBCD LINE NUMBER (5 DIGITS)

The BASIC line
15160 END
would be parsed as:

@16 'EWND OF LINE' TOKEN

212 TEND' TOKEN

@2 LENGTH OF LINE (212 AND @16 MAKES TWO BYTES)
14@

121 --> 3-BYTE BCD LIMNE §

aal

Let's take a look at how a line number of 15168 generates the three
bytes 148, 121, and #8l. Since a BCD digit takes four bits, two digits
can be packed into one byte. So, let's split the line number into three
digit groups:

S 51 63

Now we turn those groups into bits:

1 BOoE @edl
2.3 gld1 Bagl
o o Ulle ©oao

3-41

Section 3: Operating System

Arrange the binary representation with three to a group. Convert this
form to an octal number to obtain the three bytes that represent the
line number.

g0 0@ ggl pal
A1 B1id gel 121
Al 140 @gg@ 14a

The values of the variables are stored at the end of the current program
in one continupous block of memory. Each wariable has a header which
contains information about that variable. Following are the structures
of different kinds of variable storage areas. All wariable storage
areas begin with a one byte header. The bits in that header and their
meanings are:

VARIABLE HEADER BYTE LEGEND

BIT 7 6 S5 4 5 2 1 0

O=VARIABLE
1=FUNCTION

0=NOT TRACING

0=NUMERIC
1=STRING — 1=BEING TRACED
0=LOCAL
—_— 1=
0=SIMPLE REMUIE
T=ARRAY O=NORMAL VARIABLE
1=CALC MODE VARIABLE MAME
00=REAL
01=INTEGER
10=SHORT

3-42

Section 3: Operating System

In the following diagrams in this section, an "x" will mean that that
particular bit position can be occupied by a "1" gy a "#."

Simple MNumeric Variable

Local
g, 4, or 3 bytes of value
| . depending upon whether it's
hisdald REAL, SHORT, or INTEGER.
Addresses
3-byte pointar to ASCI namae.
00 xx0 0x0
Remote
3-byte pointar to value.
Increasing o
Addiaiite 3-byte pointer to name,
00 xx0 1x0

3-43

Section 3: Operating System

MNumeric Array

Lecal
Elament row 0, column 1
8, 4, or 3 bytes.
Element row O, column O
8, 4, or 3 bytas.
Increasing
Addresses
2-hyte max column.
2-byte max row.
¢ 3-byte total size.
3-byte pointer to ASCI nama.
071 xx0 Ox0
Remote
3-byte pointer to total size.
Inereasing
Addresses 3-byte pointer to ASCI name,
071 220 120

3-44

Section 3: Operating System

Simple String Variable

Local
n bytes of string value,
2 bytes of actual length.
2 bytes of maximum length,
Increasing
Addresses
3 bytes total size (n).
' 3-byte pointer to name.
10 xxx Ox0
Remote
3-byte pointer to total size.
Increasing 3-byte pointer to name.
Addressas
10 xx0 1x0

3=45

Section 3: Operating System

String Array Variable

Local

Increasing
Addrasses

Remote

Increasing
Addresses

i-46

M1

Mo

17 xx0 0x0

17 xx0 120

M byte value of row 0, col 1 elemaent.

2-bytas actual length of row O, col T element (M1 < M),

N bytes value of row 0, col 0 element.

2-byte actual length of row 0, col 0 element (MO <N,

2-byte maximum length of each elemeant.

2-byte maximum column index.

2 bytes maximum row index.

3-byte total size (N + 2] ® {# of rows)] * |# of cols).

3-byte pointer to ASCI name,

3-byte pointer to total size.

3-byte pointer to ASCI name.

Section 3: Operating System

Numerical User Defined Functions

8-byte function value.

1-byte CSTAT.

3-byte RMEM (reserved MEMory count).

Increasing
Addresses

3-byte TOS (top of stack pointer).

3-byte return address (relative).

3-byte function address [relativa).

3-byte pointer to ASCIH name.

00 xx0 0x1

3-byte PCR (BASIC program line pointar),

3-47

Section 3: Operating System

String User Defined Functions

n-byte string function valua,

2-byte actual length.

2-byte maximum length,

3-byte total length,

1-byte CSTAT.

Increasing
Addresses 3-byte RMEM (reserved MEMory count).

3-byta TOS (top of stack pointer).

3-byte PCR [BASIC program line pointer].

3-byte return address (relative).

3-byte function address (relative).

3-byte pointer to ASCIH name.

10 xx0 0x1

Because calculator mode statements destroy all previous calculator mode
statements but not their variables, the pointers to the ASCII names of
the variables cannot point to the calculator mode statement. A dummy
calculater mode simple string variable is created with the bit set in
the header that indicates this is a calculator mode variable name. This
dummy variable is skipped for all purposes other than searching for
variable names at allocation time for calculator mode statements. When
a calculator mode statement 1s allocated, the addresses used £or the
variables are relative to FWCURR.

3-48

Section
IV

CONTROLLERS

4.1 Introduction

The HP-87 is a multi-processor system. The keyboard, the CRT, the
timers, and the interface modules are all controlled by individual
microcomputers. The mainframe CPU coordinates activities between the
peripherals using the I/0 addresses. To communicate with these
controllers, refer to the appropriate sections.

4.2 CRT Controller

The CRT 1is an intelligent component that is controlled by an internal
computer, or CRT controller. The CRT also has a memory which
continuously refreshes the CRT display.

Main Memory CRT Maomory

e
Addresses

The CRT controller and the CPU communicate using four addresses in RAM.
Each address requires a two-byte guantity to specify a CRT memory
address. The 1/0 addresses are:

CRTBAD DAD 177781
Storing a two-byte address toc this locaticn causes the CRT
controller to load its byte address pointer with that address.

Section 4: Conktrollers

CRTSAD DAD 177700

Storing a two-byte address to this location causes the display to
be started at that address,. This makes the display appear to
gcroll up and down or side to side or to jump to a different page
depending on the new start address. Storing toe CRTSAD has no
effect when in GRAPH NOBMAL or GRAPH ALL modes.

CRTDAT DAD 177783

Storing a single byte to this location causes that byte to be
Stored to the CRT memory location currently peinted to by the
controllers byte address. Loading a single byte from this
location reads the byte from the CRT memory location currently
pointed to by the controller's byte address.

After either a load or store operation through CRTDAT the CRT
controller automatically increments by one 1its internal byte
address pointer. If you did a series of single byte store
instructions to CRTDAT without storing anything to CRTBAD in

between, those bytes would be stored in successive CRT memory
locations.

However, before storing to CRTDAT, you must first read CRTSTS and
check the least significant bit to make sure the controller is not
busy. Before loading from CRTDAT, you must store a byte to CRTSTS
with the least significant bit set te tell the CRT controller that
you want to read the current memory location. You must then read
CRTSTS until the BUSY bit indicates the controller is not busy, at
which point you can load from CRTDAT to get the byte. An easier
way 1s to simply execute a JSB =INCHR (call the system routine)
that does all the rest for you.

CRTSTS DAD 177782

Loading a single byte from CRTSTS gets you information about the
current status of the CRT controller. Each bit has a specific
meaning:

Reading from CRTSTS

Bit 5] 1
? Not Busy Busy
1 Unblank Blank
2 Power-up Power—-down
3 16 lines 24 lines
4 Display time Retrace time
5 Noninverse Inverse Display
3] Normal A11
7 Alpha Graphics

Secticon 4: Contreollers

Storing a single

byte to CRTETS sets

mode and/or reguests a read:

the CRT contreoller to

Storing to CRTSTS

Bit @ 1
g No read Read Reqguest
i’ Unblank Blank
. Power=-up Eower=down
3 16 lines 24 lines
d - -
5 Moninverse Inverse Display
3] Normal All
7 Alpha Graphics

When the CRT is blank,
beam, causing the display to go blank.
controller does not have to refresh the

transfer data to

the controller has

disakbled the

a specific

electron

When this is the case, the

display,

causing it to
and from the CRT memory much faster.

When you

switch from alpha to graphics or graphics to alpha there will be a

flash on

the display unless it has been blanked.
you must set the blank bit during a retrace.
system routines that will blank and unblank the CRT for you.

are CRTWPD and CRTUNW.

When the CRT is powered up or powered down, the

the high woltage

saction

done to conserve powWwer.

controller
of the CRT driver on or off.

To avoid this,
There is a3

pair of
They

turns
This is

Section 4: Controllers

4.3 Display Modes

ALPHA WORMAL

OCTAL
ADDRESS

000000

000120
000240

007760

010100
010220 last line of ALPHA NORMAL memory

010340 start of GRAFH NORMAL meamaory

ALPHA addresses in CRT memory are 000008 to 816337. In alpha mode the
display shows 16 or 24 (decimal) lines of 88 (decimal) characters per
line. The scrolling keys permit viewing of an additional 38 (decimal)
lines of alphanumeric data.

Because each ASCII character occupies eight bits, one character can be
stored at each memory location. To mave the cursor te the right ene
position, add one to the address.

If the start address (CRTSAD) is at an address where there 1s not enough
ALPHA NORMAL memory left for an entire display, then the CRT controller
will start fetching bytes from address 080000 when it reaches the end of
the ALPHA memory. Because of this a mod operation must be performed on
alpha addresses when moving the cursor around.

A&t power-on and after & RESET the CRT start address is set to @p@9p@. If
you roll the display up one line the CRT start address will then be set
to @8120. If you were to roll the display deown one line, the start
address would be 108224.

Section 4: Contreollers

GRAFH NORMAL

OCTAL
ADDHRESS

010340 first (top] line of GRAPH NORMAL display

010422

037534
037616 last (bottom] line of GRAPH NORMAL display

037700 last 64 bytes are unused.

In GRAPH NORMAL mode, the screen is 58 bytes (decimal) wide. The GRAPH
display always starts at 18348.

The last 64 (decimal}) bytes of CRT memory are unused in NORMAL mode.
The contents of memory location 18348 will determine whether or not the
first eight dots in the top 1line of the display will ©be on. The
contents of memory location 18341 will determine the state of the next

eight dots on the top line.

4-5

Section 4: Contrellers

ALPHA ALL

OCTAL
ADDRESS

0o0000 first line of ALPHA ALL mamaory

000120

037440

037560 last line of ALFHA ALL memory

03zF7o0 last 65 hytes are unused.

The ALPHA ALL memory maps 88 addresses per line of the CRT display and
the last 64 (decimal) bytes of memory are unused. When the start
address gets too close to the end of memory, the controller wraps around
to address PEPBEP to finish the display page.

4-6

Section 4: Controllers

GRAPH ALL

OCTAL
ADDRESS

010340 first (top) line of GRAPH ALL display
010444

037640

037744 addresses 37744-37777 addresses 0-47

000050
000154

010134 last line of GRAPH ALL display

010240 |ast 64 bytes are unused

In GRAPH ALL mode there are 68 (184 octal) bytes per line of the
graphics display, giving a dot resolution of 544 dots wide by 240 dots
high. The controller will again wrap back to address 866888 to continue
fetching bytes when it runs out of memory at the end of the NORMAL
graphics area.

4-7

Section 4: Contreollers

4.4 Feyboard Controller

The keyboard controller monitors the RAM location keyboard scanner, four
timers, &nd the beeper.

Keyboard Scanner

All of the keys are connected to keyboard inputs. The controller
monitors these connections, waiting for a key to be pressed. When a key
is pressed, the controller generates a service request to the CPU. When
the request is granted execution vectors ¢to the service routine
KEYSRV. The keyboard service routine saves the CPU status then does a
JSB=KYIDLE instruction (refer to Hooks, paragraph 3.5). If the KYIDLE
hook has not been taken, control will return to KEYSRV. It will then
disable interrupts, save registers, and read the Kkey code of the key
that was pressed from the keyboard controller through the I/0 address
KEYCOD, The key 1is checked by KEYSRV to see if it was RESET. If so,
KEYSRV does a RESET. If not, it checks to see if any other keys have
been pressed that hawve not been handled by the system.

If another key has been pressed, the system re-enables the keyboard
scanner and restores the registers and status. The system returns to
what it was doing when the CPU received the service request. As long as
other keys are not pending, the key code is saved in & RAM location
called KEYHIT and bits are set in R17 and SVCWRD, indicating that a key
has been pressed. The routine KEYSRYV then restores the registers and
status.

Once a key has been pressed, no more keyboard interruptions will be seen
until the previous key 1is released, and a2 1 has been stored to I/0
address KEYCOD (which restored the keyboard scanner). If the interrupt
were to occur between the last DRP instruction and an extended memory
access, the EMC could lose track of what the DRP setting is. Refer to
paragraph 3.6.

4-8

Section 4: Contrallers

with the

The following define the I/0 addresses associated
scanner:
KE¥STS

Write: Bit 5] 1
@ Mo effect Enable keyboard
1 o effect Disable keyboard
2 Not used -
3 Not used -
4 not used -
5 Speaker off Speaker on
5] No effect 1.2 kHz
7 Mo effect Toggle Flip FF

Read: Bit @ 1
a Device disabled Device enabled
1 No key pressed Key pressed
2 Not used -
3 Shift key up chift key down
! Nat used =
5 Mot used -
& Not used -
7 Globals disabled Globals enabled

Bits & and 1 of KEYSTS allow you to
separately from all other devices,

KEYCOD

keyboard

disable and enable the keyboard
Bit 7 (when reading) tells you
whether global interrupts are enabled or disabled.

The status of KEYCOD utilizes a byte rather than individual bits.

Write: If

tha

value is 1,

Ehen

the Kkeyboard

re-enabled as soon as the key is released.

Bead:

scanner

Returns the keycode of the key that was pressed.

will be

4-9

Section 4: Controllers

Following is a listing of the system key service routine, KEYSRV,

presented here as an example of what you need to do if you take owver
KYIDLE,

Sga0
5880
5800
5940
520
2930
35940
5950
53EQ
55370
5330
3390
B0
010
[={alsn]
8030
B040
BO50
a060
070
algod
BO030
5100
6110
B120
&130
clal
5150
B1E0O
6170
2180
5130
BZ0O0C
6210
BZ220
BZ30
BEZ240
B2350
BEZED
BZ 70

4-18@

KEYSRY

RSTART

MORSET

HAVE1

SHD

J58 =H¥IIDLE

ST-BD R3IZ, «GIMTES
PUMD R3Z,+RE
LDBD R3IZ, =KEYCOD
BIN

CHE R3IZ2, =213

ITHZ MORSET

LOM RE; =STRCH
J5B =RESET.

LOE R30, =1

STED R3O0, =xEvCOD
70 DOCUR.

LUED R33, =SV UWED
JOT HAVED

ICE R33

STER R313, «SVCHWRID
STBO R3Z, =KEYHIT
LOB R3Z, =20

ORE RY7,R3Z

JEB =EO0I

LOE Fa, =1

STED e, =KETCOD
POMD R#,-RE

GT0 EWDSR

LDBD R3Z,=KRFET1
STB0 R3Z, =KEYCHT
RTH

STHMD R10,=51¢
POMD B10, -FE
PUMD R10,+FS

AWM R1D,=77,0
AODE R10,=100
STED R10,=RAILOH
LoMO R1G, =510
GTO RAIDH

Sawe the STATUS, ARP; and DRF

Call the RAM hook

Oisable globa!l interrupts

Sawe register dantents to recall later

Get the keyecode from the contraoller IC

Forge BIMW mode for keycode compare

Is 11 the RESET key?

Jif no

Else resst the return stack pointer

Do a RESET

Megd to store a 1 autr to KEYVCOD tao
restart the heyhoard scanner

Cutput cursor 1o CRT and fall into exec.

Any other unserviced keys been pressed?

JiT wes, throw this key away

Elzse set the koayvboard bit

Fnd restore SYCWRD

Save the keycode for the =y

Load the mashk ‘to sat1 servic
in ®COM (R17)

Make sure we“re set to slow repeat spesd

Can’t get any more kevs unless we
restart the kevboard scanner

Restore the registers we wused (HIZ-RITF)

Make the current DRF setting avatlable

to the EMC.

siem
& reguesst b1t

zet the slow repeat count
Zet the counter to the siow rspeat

Cawe RIC-11 in a reserved BEAM location
zet the byte of SAL that contains ORF
Festare so we can FRO later

Isclate the ORP register bits

Make 1t a DORP instructicn

Store 't into RAM so we can executs 1t
Festore RIO-11
Fimish

Section 4: Contrallers

At power-on, the system initialization routine has stored at RAID+L the
following code:

RAID+41 BSZ 1 Flace holder for DRP instruction
STBD R#,=GINTEN Re—-enable global interrupts
PADL Bestore status, the ARP, and the DRP
RTH Done
Timers

The timer section of the keyboard controller consists of four separate
timers and four registers each containing eight BCD digits. The timers
and registers are updated at a rate of 1 kHz. During this updating, no
read or write operations should be performed to the CLKDAT address.
Each timer that equals its register count causes a service reguest
interrupt. Tt is then set to zero to begin ancother count seguence. The
contents of the timers are transferred in four consecutive bytes each
containing two BCD digits.

The keyboard scanner has the highest priority on the controller

regarding interrupts. Next highest is timer @, with timer 3 being the
lowest.

4-11

Section 4: Controllers

CLKSTS

This address contains the following information needed when wusing the
timers.

Write: Bit Comments -

Disable addressed timer.
Enable addressed timer.
Stop addressed timer.
Start addressed timer.
Clear addressed timer.
Clear interrupt service
flip FF.

Wl Lo R = =

6 Bits & and 7 are the

7 timer address (® through 3).
Read: Bit Comments

@ Timer @ enabled.

1 Timer 1 enabled.

2 Timer 2 enabled,

3 Timer 3 esnabled.

4 Not used.

5 Not used.

& Mot used.

7 Read (timers available for

access through CLEDAT) .

CLEDAT

When loading from CLEDAT, you must execute 3 four-byte load to get eight
BCD digits which represent the value of the last addressed timer.

When storing to CLKDAT, you must execute a four-byte store and the four
bytes must be the eight-digit value vyou want the last addressed timer
set to.

Before executing a load or store instruction te CLKDAT you must first

check the most significant bit of CLESTS to make sure the timers are
ready to be accessed (bit 7=1).

4-12

Section 4: Controllers

There are no hooks in the timer interrupt routines. The only way to
make use of the timers from assembly language programming is to
periodically check SVCWRD to see if any timers have been interrupted.
This will only work if veou never return to the BASIC interpreter, as the
executive loop will alse check for timer interrupts at the end of each
BASIC statement and handle them if necessary.

The following code will read the value of timer B (the system clock).
It will use that value and the base time to generate the current time
and return the current time to the R12 stack.

TIME. CLB RGS
STHD R55,=GINTDS
JSB =TIMWST

| ADDRESS TIMER @

! DIBABLE INTERRUPTS

! WAIT FOR READY AND STORE
! TIMER ADDRESE

CLM R4E ! CLEAR UPPER FOUR BYTES
JS5B =TIMRDY ! WAIT FOR READY

LDMD R44,=CLEDAT ! TIME TQ R44-R47

STED R44,=CINTEN ! RE-ENABLE INTERRUPTS

LDM R36,=4,8 ! SET EXPOMENT

BCD
CLE R3Z2 SET SIGN TO POSITIVE
JS5B =5HRONE SHIFT, PACK AND PUSH

I
!
! ON R1Z STACHK
LOMD RE58,=TIME | GET BASE TIME
POMD R4@,-R12 ! RECOVER INITIAL TIME
1
!

JSB =ADD1@ | ADD TO BASE TIME AND
FUSH ON R12 STACK
RTH
TIMWST J5B =TIMRDY 1 WAIT FOR READY
STBD R55,=CLKSTS | STORE OUT STATUS BYTE
BTN
TIMRDY LDBD R37,=CLKSTS ! GET TIMER STATUS
JPS TIMRDY | JIF BUSY
RTH ! ELSE RETURN

The system routine SHRONF takes a lé-digit number in R4B-R47, an
exponent in R36-R37 and a sign byte in R32 and normalizes it (shifts out
leading zeroes and adjusts the exponent to match). It then packs the
exponent and sign intoc R48-R41, and pushes the floating point result
onto the R12 stack. The ADD1@ routine is basically the same as ADDROL
except it expects as inputs two real (floating point) numbers in R49-R47
and R5B-R57, rather than two real or integer numbers on the R1Z stack.

Section 4: Controllers

The following code sets timer @ (the system time clock) the way it's set
at power—on.

TIME® LDE R55,=32 SET UP STATUS BYTE.
BITS 4, 3; 1 WILL CLEAR
TIMER O.
START IT, AND ENABLE IT TO
INTERRUPT.
GENERATE 864028808, THE
NUMBER OF MILLISECONDS
IN A DAY.
DISABLE INTERRUPTS.
WAIT FOR READY,
SEND THE TERMINAL COUNT.
RE-ENABLE GLOBAL INTERRUPTS.
DONE .

CLM Ré4

LDM R46,=108,206
STBD R#,=GINTDS
JsB =TIMRDY

STMD R44,=CLKDAT
STBD R44,=GINTEN
RTH

M mEm EEm e B Be= #Tm g B B e B pas

Speaker

The speaker can be controlled through the I/0 address KEYSTS. Bits 5
and & of KEYSTS allow you to either make the speaker beep at 1.2 kHz or
turn it off and on at whatever fregquency vou wish (within the limits of
the clock cycle of the CPU).

4-14

-

Section
W

SYSTEM MONITOR

5.1 Introduction

The HP B2928A System Monitor is an optional plug-in module that permits
you to set breakpoints and single step or trace through the execution of
assembly code. Two breakpoints can be set in any portion of memory with
an address lower than 280000, Any time ‘either of these addresses is
referenced in any manner, an interrupt is caused. The user can use this
interrupt to examine CPU registers, status bits, memory locations, and
extended memory pointers.

Sl System Monitor Commands

The system monitor commands described in this section are demonstrated
later in this manual. Refer to section 7.

BEKFP octal address [,select code for output]

Sets breakpoint (BKP) #1 or #2 at a specified address in memory. If no
breakpaints have been set, the command sets BEP#l. If BEP#l is already
set, the command sets BKP#2. If BEP#1 and BEP#2 are both set, the
command resets BKP#2; BKP#l remains set at its original address.
Breakpoints can be set at any address lower than 200000 in system RAM or
ROM. They can be <¢leared only by using the CLR command. Using the
[RESET] key will not clear breakpoints.

51

Section 5: System Monitor

When a breakpoint is encountered, execution

halts and a block of status

£

information is output to the CRT IS device. The following keys are
typing aids:
Key Use
B Set an additional breakpoint (BKP)
& Clear (CLR) a breakpoint.
M Obtain a memory dump (MEM) .
B Change program counter (PC=).
R Change contents of a register (REG).
T Using the TRACE command.
1 Change value of pointer #l1 (PTRl=).
2 Change wvalue of pointer #2Z (PTRZ=).
[STEFP] Single step execution.
[ROLL ™] Eell up display.
[ROLL V] Roll down display.
[RUN] Resumes program execution.
[BACK SBACE] Back space.
[A/G] Alternates between graphics and alpha
modes.
Most other keys on the keyboard are inactive at a breakpoint until a
typing aid has been used.
e

PC DR AR OV CY NG LZ ZF RZ OD OC E BKP1 BKPZ PTR1 PTRZ ROM

D2ZZY3 3B 3E B O 1 O O ¢ @ © 01 114333 114303 0377713 037F73Z 000
o 2 3 4 &5 B 7 MEM 30
ROO 00D O1Z ZBS 230 2?3 044 150 204 025 000 D11 210 303 030 011 210 &
RI10D 242 Z00 350 21Z 371 Qo0 Q01 000 193 031 305 031 266 D31 .Z47 031 Kk E B *
RZQ. 044 044 233 230 140 011 236 200 J42 207 022 210,022 210 108: 251 b F
Ran 237 200 1034 000 OFS 210 320 230 Q70 204 230 136 ZE2 001 3IF? 25E B 7 HW)
R40 110 233 230 001 000 000 044 044 40 040 ZEZ 030 37T 321 o0 140 M 2 mo
RSO 000 051 Q00 000 000 000 000 Q090 366 012 Z6Z 0BS5S 210 251 014 140 « 25 1 *
REO 000 000 J00 000 QOO OG0 357 012 038 306 DOD 00O 316 274 011 316 F H< M
RPO Q16 316 000 000 000 006G QOO OGOC O30 030 230 316 306 ZO? 117 220 MF O
Output at a breakpoint includes:
1. 'The following CPU status indicators:

PC: The setting of the program counter stored in registers R4
and RS5. When execution 1is resumed, it will begin at the
address specified by the PFC.

DR: Contents of the current data register pointer.

Section 5: System Monitor

&4R: Contents of the current address register pointer.
OV: ©Skatus of the overflow flag.
C¥: ©Status of the carry flag.

NG: Status of the MSB (most significant bit), used to
indicate a negative quantity.

LZ: Status of the LDZ (left significant zero) flag.
ZR: GStatus of the zero Elag.
RZ: BStatus of the RDZ {right digit zern) flag.

OD: GStatus of the L3B (least significant bit), used to indicate
an odd quantity.

DC: Setting of DCM (decimal) flag. Used to indicate decimal
or BCD mode.

E: Contents of the E (extend) register. This will be a
quantity between B and 17 occtal.

BEPl: Indicates absolute address where breakpoint 1 is currently

set.

BKP2: Indicates absolute address where breakpoint 2 is currently

set.

PTR1: Indicates address of extended memory pointer 1.

FIR2: Indicates address of extended memory pointer 2.

AOM: Indicates number of ROM which was selected when the

breakpoint occurred.

The contents of 188 (octal) RAM or ROM locations are oukbput
beginning with the cctal address specified in the last executed
MEM and will continue Eor 100 octal bytes. If no MEM was
executed, 1PE (octal) bytes of memory will be outpubt beginning
with zerc. The default ROM number is Zero unless previously
indicated. If MEM was executed, 108 octal bytes will be output
starting with the address of MEM,

Contents of CPU registers @ through 77.

Memory contents in ASCII.

-3

Section 5: Bystem Monitor

CLR breakpoint number

After CLR is displayed (as a result of typing "C"), the user can bype 1
[END LINE] to clear BPl or 2 [END LINE], to clear BP2. After CLR is
displayed pressing [END LINE] or typing & number other than 1 or 2 will
clear both breakpoints.

The CLR functions can be used any time execution has been halted,
whether or not it has been halted by a breakpoint.

MEM address [:ROM{][,# of bytes][=#,#,...1]

This command dumps the contents of computer EAM or ROM memory to the
current CRT IS5 device beginning with the octal address selected.
One-hundred octal bytes are dumped unless another parameter was input.
The M™MEM function can be used after execution has been halted by a
breakpoint.

The ROM number if included, is an octal walue of selected plug-in ROMs
from which memory is dumped. Default value for the ROM number is system
ROM @, if no other ROM number has been selected.

The output shows the octal representation of the bytes in memary and the
ASCII representation of the bytes.

If there are numeric entries after the "=" sign, memory is not dumped;
the contents of memory locations beginning at the octal address
specified are changed +to the octal values after the "=" sign. The
memory locations must be in RAM. The contents of one succeeding memory
location are changed for each value specified after the "=" sign. The

number of bytes, if included is disregarded in this case.

Examples: MEM 1333982
Dumps contents aof 108 octal bvtes of memory to the CHT IS
device, beginning with memory location 183388,

MEM 133380, 20
Dumps contents of 2@ octal bytes of memory to the CRT IS
device, beginning with memory location 1083368.

MEM ©B286: 48,280

Dumps caontents of 280 byvtes of the assembler ROM (ROM #48)
to the CRT IS device, beginning with memory location 68280.

MEM l@5@6@¢ = @,@,@,15
Loads memory locations 165808, 185801, and 185082 with
zeros, and loads location 185083 with 15 octal.

Section 5: System Monitor

BPC= octal address

Changes contents of program counter stored in CPU registers R4 and RS to
the specified address, and dumps CPU status and memory contents exactly
as when a breakpoint (BKP) is executed. When execution is resumed, it
will begin at the address now specified by the contents of the program
caounter (PC).

Example: PC = 3477 (Sets the PC to resume execution with byte 083477.)

REG number of CPU register = value

Changes contents of specified CPU register to the wvalue given, and dumps
CPU status and memory contents as when a breakpoint (BKP) is executed.
Value may be octal, decimal, or BCD.

Example: REG 35 31 (Changes contents of register R34 to 31 octal.)
REG 36 18C (Changes contents of register R36 to BCD 19.)
REG 37 = 25D (Changes contents of register R37 to 25 decimal.)

STEP

Although STEP is not a command, it 1is a typing aid which executes the
next complete machine code instruction (not Jjust the next byte).
Beginning with the location currently addressed by the PC, it halts and
dumps CPU status and memory contents like a breakpoint.

TRACE octal, decimal, or BCD wvalue

Fesumes execution with kthe next machine code instruction, and continues
for the number of instructions (not bytes) specified by the octal,
degimal, or BCD value.

After each instruction is executed, CPU breakpoint and status is output
Lo the current CRT IS5 device. When exescution halts, the CPU status and
memory contents are output as at a breakpoint. Because of the internal
coding of the system monitor, the address of BKP1 appears to increase as
each instruction 1is traced and status 1is output. However, when trace
execution halts, both breakpoints are reset to their original addresses
(when the TRACE command was executed).

To halt execution during TRACE, press any key. Repeatedly pressing a
key may be necessary to halt TRACE.

35

Section 5:

Example:

oR

GEZZ2TT 48

B0
=10
=20
m=an
40
RS0
RED
(=i

Or
46

or
46

Or
46

or
Z0

o
(]
-
40
£37
110
aio]
Qo0
18

Bystem Monitor

TRACE 18 output

AR
ElL

AR
1Q

AR
10

1
G112
200
RER!
Z00o
233
251
(w78]
ERRS

2%

T+

| ER |

Ol

P

e L Lk Lk O B

Ve

o I i S O P o TR |

s

I
[o
[E

CT MG L

& 0

CY MG
LR

¥OMG
o oQ

PTR1= octal value

243
371
140
Q075
oo
oo
QG
Qo

2R

Rl
[

-
il

ZF

ZF

zF

ZH
(o}

=

4 3
o
a1
Zlno
[N}
2l
i
(el

Changes pointer address.

FTRZ= octal wvalue

Changes pointer address.

2 oo

L}

oo

0n

ano
10

7
204
[y
Z00
230
USE
Qoo
o1z
(ulu{n

ME i
DZE
153
142z
D70
340
JEB
£136
REE[w

BKP
nZZa

BKPt

GZZZ74

BRI

GEZZETS

B Py

DE1636

BikF 1

L21B37

BrP3

DZ21640

BEF1

21641

BEF1

11433

Q0
Qa0
o3
Z07
204
040
012
306
Q3o

1
T3

ErF
114303

BKPZ
1143023

BKF2
11430232

BrPZ
114303

BKRZ
1143053
BHFRZ
114303

BlPZ
114303

BEREZ
3114303

]

211
305
(8
£3d
Z2B2
28 E
oo
230

L T DDy == T T
T O Lad el ==) =
O B0 0 D= ¢

PTR
QIATTT13

PTR1
L3 R B

PTR1
@3rvena

FTR1
paveva

PTRY
pA7TTTIA

PTRA
nI?TT?3

FTRE1
03aTeera

FTR1
Cc3reeLa

303
ZEE
Hea
262
3IFT FE
210 281
3ik 274
Joe 207

030
031
210
001

PTRZ
|0 I ST

FTRZ
BAFFPIE

PTRE
O3ITTRIZ

PTRZ
e3IFTIIE

210
031
251
251
140
140
18
220

o1

247
106
20T
6188
14
11

117

ROM
oo

ROM
(Ela]e
ROM
oo

ROM
(ele]

FOm
ooo

RO
Ga

RO
ooo

ROM
ele!

i
1

E

“2 u

2 B

- O TF

FooHx
HFE O

J
]

u

I

cection
VI

WRITING BINARY PROGRAMS

6.1 Program Structure

&n assembly language program s required to have a table of Efive
pointers, or addresses, to tell the system where important parts of the
program are. The system will use these pointers to find the table of
keywords which the binary program implements and the associated routines
to execute each of those keywords. This structure called the program
shell is shown on the next page.

Section 6: Writing Binary Programs

NAM

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

PARSE BYT P, @
--Parse routine addresses go here,
RUNTIM BYT 2, 0
--Runtime routine addresses go here.
BXT 377, 377
ASCIIS BSZ @
--Keyword table goes here.
BYT 377
ERMSG EBSZ @
--Error message table goes here.
BYT 377
INIT BSZ @
--Initialization code goes here.
RTN
--The rest of the binary program goes here.
FIN

Section 6: Writing Binary Programs

The shell consists of the following parts:

1.

2.

The program control block.

Label definitions describing the locations of the tables that
will allow the system to hook inte the binary program. The
following addresses must be included in this order:

. BRun time routine table.

. ASCII keyword table.

. Parse routine table.

. LError message table.

. Initialization routine address.

LNk L b

The actuwal tables that have been defined previously. They must
contain the addresses of the routines that will be performed.

The parsing routines will tell the system how to check a
keyword for the proper syntax and parameters, and how to
canvert it to the internal RPN token format.

The actual translation of the keywords inte machine operations
is done by the run time routines whose addresses are defined
in the run time table.

A marker, two bytes containing 377, must be set directly after
the run time and parsing routine tables. When a binary
program is loaded, this marker tells the system to assign an
absolute address to all routines. All other addresses
{routine references) are relative to the beginning of the
Program.

To let the system know which character strings will be the
keywords, an ASCII table must be c¢reated to specify the
keywords.

An error message table allows assembly language programs to
specify custom error messages.

The code for a special initialization routine that is to be
executed during initialization of the system, as at power-on,
reset, allocation, and deallocation times. Refer to
Initialization Hooks in section 3.

The routines that will actually do the operations reguired for
defining and executing the new BASIC keyword must come after the
tables.

Section 6: Writing Binary Programs

The system will use the structure of the program shell to access the
routines in the program. If a mistake 1is made in the structure, then

the system cannot run the program.

The labels that are used to reference routines and routine tables can be
any name as long a5 the names of routines in the tables cerrespond with
the names of the routines themselves.

In addition, after the execution of a routine, control must be passed

back to the system by executing a return. & return may be included
after every routine.

Control Block

The program control block is 40 (octal) bytes long and is required to
tell the system important things including:

e The first four characters in the name of the binary program.
e The length of the program in bytes, including the control block.

e The type of file is contained in the seventh byte. The format
of the bits in this byte are as follows:

Bit Meaning

BeB=BASIC Main Program
B@1=BASIC Subprogram
@aZ=Binary Program
Undefined

Undefined

Undefined

Undefined

f=0Option base 1
1=0Option base @

7 @=lo COMMON

1=COMMON

= B ==

o un

o The binary program number.

e The name of the file in mass storage (up to 180 characters).
e Six bytes required by the system.

e The base address of the first byte of the contrel block.

The control block is generated by the WAM instruction, which specifies
the program name and number.

Section 6: Writing Binary Programs

The program listed below is used in examples throughout this section.

1000
1010
1020
1030
1040
1050
1080
1070
1080
1090

| D

RUMTIME
PARSI MG

ERMSG
KEYWORDS

IMIT
TESTPARS

TEST.

SCAN
FTRZ-
STEEEF

HAM

HEF
DEF
DEF
DEF
DEF
EYT
LDEF
BYT
DEF
BYT
ASP
BYT
ETH
LOmM
Lom

STMI RS5, =PTRZ-

ISB
RTH
BYT
JSE
RTH
ORD
ORD
ORD
FIN

167, TEST
RUNTIME
HKEYORDS
FRRSING
ERMSG
INIT

0,0
TEST.
0;0
TESTPRRS
377,377
ARG
377

RSE, =0, 371
RSS, =PTR:-

=SCHH

241
=5TBEEP

Section 6: Writing Binary Programs

Example: The program TEST is 1087 {octal) bytes leng and contains the
Following MAM statement and control block.

1600 MAM 167, TEST
[b 7]
TEST (LENGTH] ryee | BFPM
o
[NAME OF FILE AS ON DISC
= iBAse aopRESS |7
DRIVE] gy [UNDEFINED]
an 32 Jid [
[LAST BYTE DEF DEF DEF
ADDRESS] RUNTIME ASCIS PARSE
Memory Contents ASCII Representation
124 165 123 123 107 00¢ 882 167 TESTG
124 195 123 124 1¢2 040 940 040 TESTB
Q40 D40 0C@ @00 @GP D¢ BOP ARQ

god 22]

The Eirst four bytes contain the ASCII representation for the name TEST.
The next two bytes, with the least significant byte first, contain the
length of the binary program in bytes. The type of F[File that the
program is stored under is represented in eight bits (one byte), and the
binary program number is stored in the last byte. The next 10 (decimal}
bytes show the ASCII representation for the file name under which the
program is stored, with ASCII blanks (848) to fill the rest of the
bytes. The following six bytes are undefined, and the last two bytes
contain the address of the first byte in the binary program.

6-h

Section 6: Writing Binary Programs

System Table

The system uses this table to locate the routines and tables it will
need to interpret the binary program. The system table must always be
present in a binary program and must always define the subsequent tables
in the proper order. During operations the system will need to have the
address of a routine te handle parsing, initialization, execution, or
error conditions. It will expect the address te be at the proper
location as shown below:

Bytes From Base Address Sample System Table
32 DEE RUNTIME
34 DEF KEYWORDS
6 DEF PARSING
40 DEF ERMEG
42 DEF INTT

When the system looks for a run time routine, it will add 32 (octal) to
the base address of the program and access the run time routine table at
run time. Likewise, it will add 34 (octal) to the base address to Eind
the parse routine table, and soc on. The system will expect the tables
and the initialization routine to be in exactly these places in the
program.

Placement of Binary Program Routine Tables

The addresses in the parse and run time routine table will be made
absolute by the system when the program is executed. To indicate the
end of the tables whose addresses will be absolute, the system looks for
two bytes of 377's. Only the parsing routine and run time routine
tables are required to have absclute addresses, s=o all other routine
tables must follow the two bytes of 377's.

ASCIL Keyword Table

The system will check a binary program for a BABIC keyword before it
will try to process the keyword. In the ASCII table, all of the key
words are arranged sequentially. When a BASIC statement is entered into
the CRT, the system attempts to match the characters with a keyword in
the takle. The oarder of the keywards will affect the parsing and
execution of the keyword, as the first keyword in the table will be
processed by the first parsing routine 1in the parsing routine table and
executed by the first run time routine in the run time routine table.

Section 6: Writing Binary Programs

The system attempts to find a match by comparing each character in the
table with each character in the keyword until it reaches a character
with the most significant bit set. This indicates the end of a keyword,
and, 1f no match has been found, the system assumes that the next
character begins a new keyword and increments the number of the token.
The search stops when a match has been found or a byte containing 377 is
found.

Example: The following code creates an ASCII keyword table with one
Keyword, TEST. The ASP instruction creates an ASCII string with the
most significant bit set on the last character, and the BYT 377
instruction signifies the end of the ASCII keyword table.

1118 KEYWORDS ASP "TEST"
112p BYT 37

Parsing Routine Tahle

If the system accesses a BASIC statement keyword that a binary program
has listed in the ASCII keyword table, it will use the parsing routine
provided in the program. Functions will be parsed by the system. The
position of the keyword in the ASCII keyword table determines which
parsing routine will need to be executed. If the keyword dees not nead
to be parsed, then the corresponding position in the parsing routine
table must be filled with two bytes of @'s to reserve the space
corresponding to the ASCII keyword table.

The system will always skip the first two bytes after the location of
the parsing routine table. The next two bytes are used as the address
of the first parsing routine,

Example: The following parsing routine table has only one routine,
TESTPARS, to parse the keyword TEST.

1080 PARSING BYT 8,0 Two dummy bytes
1898 DEF TESTPARS First parsing routine

Run Time Routine Table

Each keyword also has a run time routine associated with it. More than
one run time routine may be listed in the table, so the system
distinguishes between them in the same way as in the parsing routine
table. When the system encounters a keyword that is listed in a binary
program, it passes control to the proper routine corresponding to the
position of the ASCII keyword in the keyword table.

Section 6: Writing Binary Programs

Example: The run time routine table for the program TEST contains one
routine address "TEST." which corresponds to the keyword "TEST" and the
parsing routine TESTPARS.

168 RUNTIME BYT @,8 Two dummy bytes
1478 DEF TEST. First run time routine

Error Message Table

When an error is flagged in XCOM, the executive loop calls an error
reporting routine that displays the error message. If the error number
is less than 128 (280 octal), then it is a ROM error message and the
bank—addressed ROM i= selected whose number is in FBAM location ERRROM.
If the error message number is greater than 128 (200 occtal), then the
message will be from the binary program whoSe number is in ERRBPH.

The error message table is similar te the ABCII keyword table. It is
constructed of entries which are strings of ASCIT characters, the last
character of each string having the most significant bit set. The table
is terminated by a BYT 377.

Error messages in ROMs are numbered & through 177 [octal). Binary
programs are numbered from 377 down to 288 (octal). The first nine
error messages for ROMs and binary programs are for defauvlt errors.
They will give only warning messages if defaults are on (refer to the
owner's manual). The other error messages will always display the
appropriate error message. Example error message table:

10 ERMSG BYT 200,200,200,200 | | HIHE DUMMY BYTES (377,367,
el BYT 200,200, 200,200,200 || WITH THE MSB SET

34 HSF “"SYMWTRX-CHECHK KEYWORD," !'ERROR 388 OCTAL

40 ASPE "ROW OUT OF RAMGE, »16." !|ERROR 365

54 RSP "COL O0UT OF RAWNGE, »32." | |ERROR 364

g0 BT 377

70 INIT BsZ O

80 RTH

Initialization Boutine

The program TEST has no need to initialize pointers, hooks, or flags.
Therefore, the INIT routine returns control to the system. For times
when further initialization is needed, refer to paragraph 3.5.

113% INIT RTN

=9

Section 6: Writing Binary Programs

External Address Table

If any of the system locations have been used in the program, a table
must be included to define the labels as absolute addresses.

Example: In the program TEST the addresses SCAN, PTR2-, and STBEEP are
used and must be defined for the system.

1228 SCAN DaD 21110
1236 PTR2- pAaD 177715
1243 STBEEP CAD 18441

6.2 Attributes

Attributes define the type of a token. The system uses the attribute
type to determine how parsing is to occur, how allocation and
deallocation are to be performed, and how decompiling is to be done.
The system 15 told how the keyword is to be handled at these times. The
attributes must be defined immediately before the run time code in the
program memory as shown in line 94:

11i9g BYT 241
128@ TEST JSE=5TEEEP
1214 RTN

There are two types of attributes: primary and secondary. &ll keywords
have primary attributes, but only functions have secondary attributes.
The secondary attributes tell how many and the type of parameters the
function will need and may occupy one or more bytes.

Attribute Location
The attributes must be placed directly before the run time routine code.
The primary attributes must be the first byte before the run time
routine. The secondary attributes would precede from the first byte to
the last byte. The system checks the attributes from the bottom up,
starting with the primary attribute and ending with the last parameter.
The following program listing:
p4p @55 BYT @©48,855

is the octal representation of these attributes:

@55 Primary attribute - numeric function

aap Secondary attributes - two numeric parameters

b-14

Section 6: Writing Binary Programs

Primary Attributes

The primary attribute consists of one byte of information containing the

type of the keyword in the two most significant bits and the class of
the keyword in the next six bits as shown:

BITS 6-7 BITS 0-5
I /—ﬁ——\
TYPE CLASS

RUNTIME ROUTINE ENTRY POINT

The user must define the primary bits in order to tell the system
exactly how he wants the system to recognize the keyword. For instance,
if the keyword is to be a numeric function its attributes would be:

Function Mumeric Function
BB & g1 1 g %

b

@ 55
Type

Bits 7 and 6 define how Lthe keyword may be used. & keyword may be a
BASIC statement or another command for calculator mode. A BASIC
statement may be defined as legal after a THEN or illegal after a THEN.
System commands are BASIC statements used only 1n calculator mode.
Functions may be used in BASIC programs or in calculator mode.

The codes for each of the types are the following:

Bits 7,6 Octal Type
e 3 BASIC statement, illegal after THEN
18 2 BASIC statement, legal after THEN
g 1 1 System commands (nenprogrammable)
g @ 5 Functions and others

6-11

Section 6: Writing Binary Programs

Class

The class will give the system further information en how to process the
keyword. The class should follow directly after the type of keyword.
For example, a function that returns a number will be in the numeric
function class. FKeywords that are te be invisible when the program is
decompiled have Ltheir own class. All BASIC statements that are not
functions and all system commands are reserved words.

Example: The keyword "INPUT" uses two tokens to compile but only ane
shows when it decompiles. The first token puts the system into a
pseudo-calculator mode to allow characters to be entered £rom the
keyboard and outputs a "2." The other, which is hidden during
decompiling, takes the system out of the pseudo-calculator mode and deoes
the actual storing of the input values. The class of the second keyword
keeps it from being printed in the pregram listing. The keyword "LOAD"
is in the class of reserved words. Refer to the sample program LINPUT
in section 7.

Useful Classes

Bits 5-¢ Octal Class
188 €01 41 Reserved words
186 1aag 44 Invisible at decompile time
T @ F o 55 Numeric function (such as, SIN, IP)
1e 119 56 String functien (such as, CHRS, VALS)

Secondary Attributes

At parse time, if the system parser finds a match for a keyword in the
binary program ASCII table, it will then check the attribute type. I£
the keyword is a statement, control passes to the binary pregram parse
routine, If the keyword 1is a function, the secondary attributes
determine the type and number of parameters to use.

One byte 1is needed if the function uses one or two parameters, and a
second byte is needed if there are more than &two but less than seven
parameters. More parameters require more bytes. The first four bits of
the first byte indicate the number of parameters that the function will
accept. The neoxt twe bits define the type of the first parameter, and
the second parameter is defined by the last two bits. Thereafter the
consecutive pairs of bits define extra parameters.

6-12

Section 6: Writing Binary Programs

Parameter Types

Type _ Description
g B Numeric
g1 Numeric array
1@ String
11 Strange
aE1g g ae
Pk oo o s i
2 Parameters First Second

6.3 Assembler Instructions

The instruction set is used to communicate betwsen the assembly language
programmer and the CPU. Assembly language instructions can move data,
perform arithmetic operations, and execute other functions. There are
two types of instructions: those which operate directly on the CPU and
are translated into machine language; and pseudo-instructiens which act
as messages to the Assembler ROM.

The typical instruction is broken up into five fields. The first field
iz the line number, for the convenience of the programmer. When
assembled, the program will not have line numbers, instead it will show
the value of the instruction counter. The instruction counter is the
offset in bytes from the start of the program. The next field 1is an
optional label field. System labels may be defined in the global file.
Other labels must be defined in the routine. The opcode comes after the
label field and is the heart of the instruction because it tells the GPU

or Assembler ROM what is to be done. Following the opcode is the
operand({s) for the instruction, and at the end of the instruction or in
the label field the programmer may place a "!" followed by a comment.

In assembler mode the system will automatically space the elements typed
in the proper fields. The programmer has only to distinguish the fields
by at least one space. The registers may be referred to by their octal
numbers, and the system will add the "R" in its proper place.

Example: Line number 12¢ may be typed in as follows:

1€0 LOMD 46,22 fH MULTI-BYTE LOAD

B=13

Section 6: Writing Binary Programs

After pressing [END LINE], it will appear in the program listing as:

—
-
O

LOMD R4E,RZ2 A MULTI-BYTE LOAD

Line Numbering

Each line of a program source code must begin with a line number (which
will not appear in the assembled code). & line number may be up to
99999 and may be entered individually or automatically, using [AUTO] for
automatic line numbering. When a program is assembled the line numbers
will appear &5 relative addresses of the instructions, that is, the
instruction location counter.

Labels

A label may be from one to esight characters long. The label field
starts in the second space after the 1line number. A digit may not be
used as a first character, and no spaces may be used in a label because
a space denotes the end of a label. When variable storage is needed in
the program, @ label may be wused after the run time routine. To
simulate control leoops and branch execution, a label may be used to
designate the location of the jump.

Opcodes

The opcodes for assembly language instructions may be entered after
typing at least two spaces after the line number or at least a single
space after a label. Entries in the oprode £field are restricted te
valid instructions. Blanks are not allowed within the opcode field.

Opcodes may be single-byte, multi-byte, or pseudo-operations. The
pseudo-operations may act upon bytes but are only messages to the
Assembler ROM and do not generate executable code.

Uperands and Addressing

Depending upon the kind of instruction to be performed, the operand may
be a register, a label or address, a pointer tec a walue, or a relative
location which must be offset by an absolute address. The DRP will
paint teo the register that will be operated upon according to the
opcode. If the opcode calls for direct addressing, where the wvalue is
at a location outside of the CPU register bank, the operand will contain
the address of the walue in memory. If the opcode calls for direct
addressing, where the value is pointed to by a label that is located
outside of the CPU register bank, the operand will contain the address
of the pointer in memorvy.

6-14

Section 6: Writing Binary Programs

Indexed addressing can be used to access an area of memory by adding a
base address to an offset such as in table searching. The absolute
address of a label can be obtained by adding BINTAB to the relative
address of the label.

Comments

A comment must begin with an exclamation point "!." A comment may be
typed beginning in the first or second space after the line number or
one or more Spaces after the other elements of the instruction.
Cowmments may be as long as needed, though the limit is 160 characters
per line.

Constants

Constants may be entered in octal, BCD; or decimal notation. A BCD
value is entered by immediately fellowing the wvalue with a "C," while a
decimal walue is followed by a "D"; otherwise the system assumes octal
values., Constants will be stored as one or more bytes, depending on
whether it indicates & single- or multi-byte operation. After the
program is assembled constant values are placed immediately after the
machine code.

Eyntax and Explanation

Each of the opcodes are discussed in detail in the next three
subsections. The opcode is shown above its explanation, then following
the explanation is an example of how the instruction may be used.

The first two letters of the opcode signify its operation, but the
designation for a single-byte, "B," or multi-byte, "M," operation must
be added at the end. In addition, if a type of addressing other than
register immediate is needed, then the letter for that addressing mode
must be added, "D" for direct or "I" for indirect. Instructions using
direct or indirect addressing will have opcodes of four characters. A
register being used for indexing must be entered in the operand field
with an "X" instead of an "R." Pscudo-instructions always have opcodes
of three characters.

The examples are designed to give the programmer a few hints for using
the instructions in binary programs and clarify some points about the
syntax of the instruction set.

Eyntax Cuidelines

LDB Instructions shown in capital letters must be entered exactly
as shown (in either upper- or lower-case).

Section 6: Writing Binary Programs

B/ M

AR

bR

ARP

ORP

B{x)

M{x)

PC

6-16

Items shown between brackets are optional. If several items
are stacked between brackets, any one or none of the items may
be specified.

Three dots (ellipsis) Ecllowing a set of brackets indicate that
the items between the brackets may be repeated.

Contents of.

Complement.

Single- or multi-byte instructien.

Address register location. Location of Eirst byte addressed
by the ARF. (Can be a register, R*, or R#.

Data register location. Location of first byte addressed by
the DREP. Can be a register, R*, or R4.

Pddress mode for load/store. Can be blank {for immediate),
D (for direct), or I (Eor indirect).

Address Register Pointer. A 6-bit register used to point to
one of 64 CPU registers. ‘The byte to which ARP points is
often used as the first of two consecutive bytes forming a
memory address.

Data Register Pointer. A 6-bit register used to point to one
of 64 CPU registers. The location to which DRP points is
often used as the destination for data loaded intoc the CPU.

CPU register addressed by (x).

Memoty location addressed by (x) which must be 16-bit address.

Program Counter. CPU registers R4 and R5. Used to address
the instruction being executed.

Section 6: Writing Binary Programs

sp Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return
address stack.

E2A Effective Address. The lpcation from which data is read for
load-type instructions or the location where data is placed
for store-type instructions.

ADR Address. The two-byte guantity directly following an
instruction that uses the literal direct, literal indirect,

index direct, or index indirect addressing mode. This guantity
is always an address.

LOAD/ETORE Instructions

The instructions for loading and storing data have access to all eight
addressing modes, and they can be single- or multi-byte.

LD
CPU Instruction

Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

Format: LDBA DR, operand single-byte
LDMA DR, operand multi-byte
ST

CPU Instruction

Contents of data register are stored in effective address determined by
the operand and the addressing mode.

Format: STBA DR, operand single-hbyte
STMA DR, operand multi-byte

Addressing Modes

The CPU allows several addressing modes. These include literal,
register, indexed, and stack modes of memory access.

Section 6: Writing Binary Programs

Not all addressing modes are available to all instructions. The load
(LD) and store (ST) instruction have access to all addressing modes
except stack addressing, and they are used here for illustration. For a
list of the addressing modes used by a particular instruction, refer to
appendix B.

Most addresses are referred to as two-byte guantities. Because
addresses are two consecutive bytes, only the least significant byte is
referenced. For instance, the address register (AR) is actually a
single byte within the CPU register bank that is pointed to by the
address register pointer (ARP). When the address register contains an
address, the CPU register pointed toc contains the least significant byte
of the address. The next register (ARP + 1} <contains the most
significant byte of the address.

The multi-byvte feature of the CPU allows data to be manipulated in
guantities of one to eight bytes. Therefore, in the following
descriptions, only the address of the first byte is specified.

In the following descriptions, the effective address (EA) points to the
Eirst byte of data to be affected by the instruction.

Register Mode
This mode allows the CPU registers to contalin addresses as well as data.
There are three types of register addressing: register immediate,

register direct, and register indirect.

Register Immediate

Examples:

LDB R36,R32 Loads contents of R3Z into R36.

STHM R4§,R50 Stores the contents of R40-R47 into
R5E-R57.

Register Direct
Examples:

LDBD R36,R32 Loads CPU register R36 with the contents
of the system memory location addressed
by R3Z-R33.

STMD R4B, R50 Stores contents of R4@-R4Y intg system

memory beginning with the location
addressed by REP-R51.

6=18

Section 6: Writing Binary Programs

Register Indirect

Examples:

LDEI R36,R32 IEf R32 contains 185731, and location
185731 contains 119437, the contents
of 118437 15 loaded at location R36.

STBI R3G6,R32 If R32 contains 1@5371, and 185731

contains 118437, then the contents of
R36 is stored at location 118437,

Literal Mode

The operand is a literal guantity stored in memory immediately following
the cpcode. A literal string, ten octal bytes or less, is a BCD, octal,
or decimal constant or a label. The programmer 1s responsible for
ensuring that the number of bytes of the literal string matches the DRP
setting. The assembler does not check for a mismatch. Literal mode
includes literal immediate, literal direct, and literal indirect forms
of addressing.

Literal Immediate
Examples:

LB R3g,=1@D Loads 18 decimal {12 octal) into CFU
register R36.

LDM R48, =0,9,0,0,8,8,8,120 Loads 128 octal {(a fleoating point 5
in BCD format) into register R48-R47.

LDM R32,=LABEL Loads R32-R33 with the relative address
of LABEL.

Literal Direct

Examples:

LDBD R34, =ROMFL Loads the contents of the memory
location addressed by the label ROMFL
into CPU register R34.

STMD R74,=CHIDLE Stores the contents of CPU register R74

thraugh R77 inte four memory lecations
beginning with the location addressed
by the label CHIDLE.

6-19

Section 6: Writing Binary Programs

Literal Indirect

Example:

STBI R3d,=ADDK Stores the contents of CPU register R3{
into the memory location addressed by
another memory location which is itself
addressed by the two-byte literal
guantity specified by the label ADDR.

Index Mode

Indexing is wuseful for accessing data when the data is stored in a
table. In indexed addressing, a fixed base address is added to an
offset to create the desired address. The CPU performs this addition
using CPU registers R2 and R3. After an index instruction, these
registers contain the effective address (the sum of the base and the
offset). Nelther the original base nor the offset is altered in memory.
There are two types of indexed addressing: index direct and index
indirect.

Index Direct
Example:

LDBD R36,X3Q, TABLE Loads inte CPU register R36 the contents
of the memory location addressed by
registers RZ and R3. R2 and R3 centain
the sum of the contents of R3IF-R3I1 and
the address TABLE.

Index Indirect
Example:

STMI R36,X3@,0FFST Stores the contents of CPU register R36
and R37 in memory, beginning with the
location addressed by another memory
location which is addressed by CFU
registers R2 and R3. Hegisters R2 and
R3 contain the sum of the address in
R3P-R3l plus the offset specified by the
label OFFST.

STBI R36, X34, 66 Stores the contents of R36 in the

location addressed by R2 and R3 (sum of
the address in R32-R31 plus &6).

=20

Section 6: Writing Binary Programs

Stack Instructions

In stack addressing, a register pair serves as a pointer to the stack in
memory. A load or store is performed at the top of the stack, and the
register pair is decremented or incremented to the new top of the stack.
Instructions push and pop are available to push data ontec and pop data
from stacks in the main memory. These stacks can be addressed using
direct or indirect addressing.

PuU

Pushes single byte or multi-byte using direct or indirect addressing.
The stack pointer 1is incremented (increasing stack) or decremented
(decreasing stack).

Examples:

PUBD R32Z,+R12 Pushes single byte from R3Z onto the R12Z
stack. The stack pointer is
incremented.

PUBI R32,-R46 The stack pointer is first decremented
and then the single byte contained in
R3Z is pushed ontoc the R46 stack.

PO

Fops single byte or multi-byte off stack using direct or indirect
addressing. The stack pointer is incremented (increasing stack) or
decremented (decreasing stack).

FOBD R3Z,+RZ8 Pops single byte contained in R12 onto
the R20 stack. The stack pointer is
incremented after the operation.

POBD R32,-Rz2@ The stack pointer is first decremented

and then H3Z is loaded with the byte
pointed to by R28.

A=-21

Section 6: Writing Binary Programs

Stack Addressing

You can address a stack from nearly any CPU register pair. Registers R6
and R7 are hardware-dedicated and always point to the subroutine return
stack, a fixed stack of 512 bytes. A subroutine jump will automatically
push an address onto this stack and a return will load the program
counter with the address on the top of the stack, causing execution to
begin at that address on the next cycle. The R6 stack is also affected
by SAD and PAD instructions (save and restore status), which push three
bytes conto the R6 stack and remove them respectively.

Another stack used by many of the system routines at run time is the
R12-KH13 operation stack. This stack is used to pass parameters between
system routines. The documentation for each routine using this stack
describes what the routine expects on the R12 stack and what it leaves
after it has finished.

Stacks may be increasing or decreasing. An increasing stack is one
which is filled in the direction of higher memory locations and from
which data is removed in the direction of lower memory locations. 1In a
decreasing stack, data 1is pushed in the direction of lower memory
locations, and taken off in the direction of higher memory locations.
To avold confusion, it is best te address a particular stack using only
instructions for an increasing stack or only instructions for a
decreasing stack, but not both.

For stack addressing, the stack pointer 1is contained in the AR,
Multiple stacks are handled by having multiple stack pointers within the
CPU register space. A stack 1s activated by setting the ARP equal to
the location of that stack pointer.

6-22

Section 6: Writing Binary Programs

For an increasing stack, the AR must

available on the stack. For a decreasing

occupied location on top of that stack.

ARP &R

Increasing Stack

1

Decreasing Stack

point to the
stack, the AR points

Lowe: Memory
Locations

- j

k|

\'{\'\\-.iﬂl__angrv'-\ &

Higher Locatians

Lower Mamaory
Locations

Highor Locatlons

Stock
Push

Stack
Push

next

|
Stack
Pop

T
Slack
Fop

locatian
to the

Szoti

-

an f: Wriking Binary Programs

Stack Direct

In this addressing mode, the steck _is presumed te contain data. Stores
te the stack (pushes) £il1l1 the stack. Loads from the stack (pops) empty
the stack.

For & push onte an increasing stack, the AR points to the location where
data is to be stored. Following the store, the AR is incremented by the
number of bytes stored. For a3 pop operation from an increasing stack,
the AR is Eirst decremented by the number of bytes tao be popped off.,
The &K then points to the location of the data to be removed from the
stack.

For & pop from a decreasing stack, the AR points to the location aof the
data to be removed. Following the removal, the AR is incremented by the
number of bytes moved. For a push operation onto a decreasing stack;
the AR is first decremented by the number of bytes to be stored on the
stack. Then the data is pushed onte the stack.

Stack Indireact

In this mode, the stack 15 presumed to contain an ordered list of
addresses, These addresses point teo the location from which data is
read by pops or to the lecation into which data is stored by pushes.

For 2 push onte an increasing stack, the AR peints to the effective
address. After storing data in M(EA), the AR is incremented by two.
For a pop instructisn from ‘an increasing stack, the AR is [first
decremented by twe in order te point to the effective address. The
effective address is then loaded into the CPU register designated by the
LRE.

PUED DR, +AR Push byte direct with increment.

Section 6: Writing Binary Programs

ARP
[| =—*

ARF |_.- B AR _h-_

The instructions available for use with an increasing stack are:

PUBD
PUMD
PUBL
PUMI
POBD
POMD
POBT
POMIL

DR, +AR
DR, +AR
DR, +AR
DR, +AR
DR, -AR
DR, -AR
DR, -AR
DR, -AR

D {Dirsct Mode)

Lowar Mamary
Locaiions
sw |
1 .l "
¢ ?
181 ATy | I
I
Znd enlry } |
AR Ird entry | |
b | :
|
i I
Stach Sinck
Push Pop

Higher Locations

| [Indirect Mode]

2-hyte

2-hyte

addrass '|
|

addmss

1st ontry

ang anfry

Ench aniry can be ane or more byles

INCREASING STACK

Push byte direct with increment.

t

Stack
Push

1
|
|
|
|
|
|
|
|
I
|
|
|
|

Stack
Pop

Push multi-byte direct with increment.

Push byte indirect with increment.

Push multi-byte indirect with increment.

Pop byte direct with decrement.

Pop multi-byte direct with increment.

Pop byte indirect with decrement.

Fop multi-byte indirect with decrement.

6-25

Section 6: Writing Binary Programs

I {Indiract Maoda)

ARP AR .
— | —— Zibyle [|

address

e N E

1sl #niry

ind anlry | +
Sinck Stack
Push Pop
Each aniry can be one of more byles
DECREASIMNG STACK
D (Diract Moda)
Lower Mamaory
Laocatlons
AR iR
- $
i |— —_— Jrd entry | |
2nd antry I |
15t antry I l
1 |
| |
|t
Slack Stack
Push Pogp

Higher Locations

The instructions available for use with a decreasing stack are:

PUBD DR, -AR Push byte direct with decrement.

PUMD DR, -AR Push multi-byte direct with decrement.
PUBI DR, -AR Push byte indirect with decrement.

PUMI DR,-2&R Push multi-byte indirect with decrement.
POBD DR, -AR Pop byte direct with increment.

POMD DR,-AR Pop multi-byte direct with decrement.
POBI DR, -AR Pop byte indirect with decrement.

POMI DR,-AR Pop multi-byte indirect with decrement.

Section 6: Writing Binary Programs

Arithmetic and Logical Instructions

AD

Add may be wused to combine the value of the data register and the
centents of the operand. This operation may be performed on single
bytes or multiple bytes, and direct addressing or constants may be used.
In BCD mode addition will take place using four-bit digits. The result
is always stored in the data register.

Example:

ADE R28,R38 Adds the contents of R38 to R20 and
places the result in R2Z@.

ADMD R28,=BINTAB Takes the location of the beginning of
the binary program and adds it te the
value in R28, RZ1l. The result is
stored in R28, RZ1.

AN

Bach bit in the data register is compared to the corresponding bit in
the operand. If the bits being compared are both 1, then the result is
a 1. If either bit is @, then the result is @. The operand may be a
value in memory that is addressed directly. Although this instruction
is available only for multi-byte operations, single-byte operations are
possible with the DRP set to a boundary register.

Example:
ANM RZ0,R36 Converts all of the 1's in R2ZP-R21 to
@'s 1f the =ame bits in R3G-R31 are @'s.
If R28-R2]1 contain: 11 g1l #1121 g8 1 gl 1 8¢
and R3P-R31l ceontain: 1 @88 111 @ el G611
then the result is: @1 886 6l1l P a1l aagae

Section 6: Writing Binary Programs

CH

The compare is used to simulate the logical operations of a high level
language. It is done by subtracting the operand from the data register
and setting the appropriate status indicators; the result of the
aoperation is not stored. In binary mode the subtraction is two's
complement, and In BCD mode the subtraction is ten's compl ement.
Compares may be either single- or multi-byte operations, and direct
addressing may be used. When used previous to a logical jump, an
IF-THEN BASIC statement may be simulated.

In order to simulate the relation:

DR<AR CMM DR, AR CY flag should be @
JNC LABEL Jump if DR<AR

DR>=AR CMM DR, AR CY flag should be 1
JCY LABEL Jump 1f DR>=AR

DR=AR CMM DR, AR ZR flag should be 1
JZH LABEL Jump if equal

CREAR CMM DR, AR ZR flag should be 0
JNZ LABEL Jump if neot equal

The jump instructions JNZ, JZR, JCY, and JNC are explained later in this
section.

OR -

Each bit in the data register is compared to the corresponding bit in
the operand. If either bit is & 1, then that bit in the data register
is set to 1. Otherwise the bit in the data register is set to @. This
logical operation may be performed on single bytes or multiple bytes,
but must use register immediate addressing only.

Example:
ORB RZ28,R30 Leaves a 1 in RZ@ if the
corresponding bit in R38 is set.
If RZP contains: g 1&1 1 @@
and R3¥ contains: g 881 pll1l

then the result is: |86 8§ 1 &1 111

oh
|

[

o

section 6: Writing Binary Programs

=B

Subtraction is simulated by adding the
data register.

complement of the operand teo the
Ten's complement is used in BCD mode, and in binary mode
two's complement is used. The result of the subtraction is stored in
the DR. The operand may be addressed immediately or directly, and can
be a single— or multi-byte instruction. The CY flag is set to 1 if the
result is positive and cleared if the result is negative.

Example:

SEM R28,R30 In binary mode, takes the two's

complement of R30-R31 and adds that to
R20-R21. The result is put in R28-RZ21.

If E2@3-R21 contain: 2 N e s S R e g 1 a1 1a3@8

and R3@-R3l contain: g1 8@ 111

g@g 21 911

then the complement of R3A-R31

1.8 1.1 1 #6587 £ S R S R e -

is added to R20-R21.

The result is: : L 8 anr #vls Ll pd 11 16828

The operation is done in binary mode. Since registers are shown
in octal, the previous example would look like this:

Bafore: R2d R2l R38 R31
@54 333 al3 187

Two's complement
Result: R28 RZ1 R3@ RE31
223 A41 g1z 1a7

6-29

Section 6: Writing Binary Programs

Example:

SBE RZ28,R3@ In BCD more, takes the ten's complement
of the two digits in R38 and adds that
to the two digits in RZ8.

If R2@ contains: ge 181 188
which in BCD are the decimal digits: 28
and R3& contains: gl 66 111
which in BCD is: 47

LN
Lad

Then the ten's complement of R38:

iz added to RZ8: 28

and the result in RZ@ is: 8@

#R

In the "exclusive or" logical operation the bit that corresponds in the
data register is set te 1 when the bits being compared are not the same.
When both bits are 1 or both bits are @, the bit in the data register is
set to @#. The CY and OVF flags are cleared.

Section 6: Writing Binary Programs

Example:
¥XEM RZ0,R38 Compares the individual bits in RZ8-RZ1 and

R3#-R31. If they are not the sames, sets
that bit te 1 in the DR; otherwise it is set
ko @.

If R28-R21 contain: 11 @Il @11 g 1 @awn 1A

and R3g-R31 contain: P11 A 111 g8 81 &11

The result in R2B-R21 is:
18 811 188 @ 1ée@d 111

Shift Instructions

All shift instructions can be done in BCD or binary mode. In BCD mode
the shift will affect a BCD digit, or four bits, and in binary mode it
will affect a binary digit, a bit. Shifts may also be single- or
multi-byte operations, and the result of a shift will be determined by
the nearest boundary in the direction of the shift. In Ssingle-byte
shifts the boundary 1is actually the register being shifted, whereas in
multi-byte operations the boundaries are these in the CPU register bank.
In arithmetic and logical operations the boundaries are normally toward
the higher-numbered registers. With shifts, the boundary may be to the
left, higher-numbered registers, or the right, lower-numbered registers
depending on whether you are shifting right or left.

Shifts are made into one of the shift registers: the E register or the
CY¥ flag. In BCD mode shifts are made inte and ocut of the E register,
and in binary mode shifts are made intec and out of the CY flag.

Section 6: Writing Binary Programs

EL

The extended left shift will take the most signficant digit, put it into
the shift register, move the rest of the contents one digit to the left
and put the previous contents of the shift register inte the least
significant digit.

Example:

ELM R28 In BCD mode, shifts the most significant
digit of R28-R21 (1868) into the E
register. The other 12 bits will move
left four bits, and the least
significant digit will be filled with
the previous contents of the E register
(8681).

RZ3 R2Z

If RZB-R21 contain: 168 8 5 I R LR I B

8@ 2 8

and "E" contained previously: @ @ @ 1

then the shift would take plarce as follows:

R23 "N R22 »©¥ N E

g0 a 1 1 @888 ae8@1 l 8@ @

—

ER

The extended right shift moves the least significant digit to the shift
register and the contents of the shift register inte the most
significant digit. It works in the same way as the extended left shift
except that the movement is toward the right boundary.

A=-32

Section 6: Writing Binary Programs

Example:

ERE R21 In binary mode, shifts the least
significant bit (LSB) to the CY¥ flag,
then moves the previous ceontents of the
CY flag to the MSB position.

If RZ1 contains: 11 811 11
and the CY flag is: 1
/-r"'__"‘-.‘
then the result would be: cY |1 11 181 1@1] —
LR 1

When a logical right shift is performed, the LSB is moved into the shift
register and the MSB is cleared. The digit is maintained in the shift
register and may be shifted back using the extended shift instructions.

Example:
LEM RZ21 In binary mode, shifts the LSBE into
the CY flag and clears the MSE.
R21 R28
If R2P-R21 contain: ({11 @11 @811 pe 161 14&4a
R21 D R20 cY
The result is: gl 121 1@l 18 1@ 1148 i

Section 6: Writing Binary Programs

LL

The logical 1left shift moves the most significant digit of the data
register intc the shift register and clears the least significant bit.
If the shift causes a sign change then the OVF is set to 1l.

Example:
LLM R3@ In binary mode, shifts the MSE of R38
inte the CY¥ Flag and clears the LSBE of
R3l.
R31 R3B
If R30-R31 contain: @1 g8 111 Lﬁ g B8l @11
C;,‘ﬁ\ R31 T, R32

then the result would be: | 8 184 81 1148 a8 plg 1168

oc

The decrement is simulated by adding the complement of 1 binary in
binary mode, to the gquantity in the data register. The guantity may be
single or multiple bytes.

Example:
DCE R31 Subtracts one from the guantity in RE31.
R31
If R31 contains: 1g 288 600
R31

then the result is; |#1 111 111

The OVF flag 1s set to 1, hecanse the sign changed.

6-34

Section 6: Writing Binary Programs

IC

When an increment is performed, 1 is added to the gquantity in the data
register. In BCD mode, the guantity is incremented by decimal 1, and in
binary meode, it is incremented by a binary 1. In BCD mode the OVF flag
is cleared (single- or multi-byte).

Example:

ICM RZ@ In BCD mode, the decimal quantity in
R2@, R21 is increased by 1.

RZ1 RZH

If R20-R21 contain: leéggl l2p1 g agla g 181

which in BCD is: 9 g 2 5

R21 B2
then the result is: l1ea1l 1981l B a1l g @118
which in BCD is: 9 9 2 G

6-35

Section 6: Writing Binary Programs

[

This complement instruction will give the nine's complement in BCD mode
and the one's complement in binary mode. The nine's and one's
complement are performed by taking the number of digits te be
complemented and subtracting each digit individually from 9 in BCD mode
and 1 in binary mode. The result is placed in the data register.

Example:
NCE RZ2@ In binary mode, flips all bits
(one's complement operation).
RZ20@
1f R28 contains: o l-B ? g111
Rz2@

then the result is: 1811 1688

Example:
NCM RZ2ZP In BCD mode, takes the nine's complement
of the contents in R2Z0-H21 by
subtracting each digit from a BCD 9
(1801} .
21 R28
If RZP-RZ2]l contalns: 1 &8 8 g a a @ g a1é 1 88
which in BCD is:] 4] 2 8
R21 R28
then the result would be: g g@al 1681 g1 1 g6 ¢l
which in BCD is: g 9 7 i

6-36

Section 6: Writing Binary Programs

TC

The contents of the data register ig replaced by the twe's complement in

binary mode or the ten's complement

complement is found by incrementing the
BCD mode, the OVF flag is cleared.

Example:

TCM H2#

If R2ZP-RZ21 contain:

then the result would be:

In binary mode,

in BCD

mode . Two's and

ten's

one's or nine's complement. In

takes the two's

complement of R2Z0-RZ1.

RZ1 K20

L3 @31 8= @I [;_H 141 1 88
RZ1 RZQ

pg 188 1&a8 [I_l g1 8 1286

B

Eection 6: Writing Binary Programs

TS

The status of the contents of the data register are tested, and the
appropriate status indicaters are set. The OVE and CY flags are cleared
in all cases, and the E register is not affected. This instruction is a
single- or multi-byte instructien. The status indicators are discussed
in section 2.

Example:
TSM R2§ Will set the status indicators and clear

the OVF and CY flags.

R21 Rz2@&

If RZ0-R21 contain: g1 266 011 @R 8281 211

LEZ RDZ

the resulting flags will be set:

DeM May be 1 (BCD) or & (binary).

E Mot affected.

CY Cleared.

OvF Cleared.

oD Set to 1.

NG Set to B.

Z Set to @ (since quantity is nonzera).
LEZ Set to d.

RDZ Set te 0.

CL

The clear instruction permits the clearing of any byte or of any
multi-byte portion of the CPU register bank. The DR 1is set equal to 0
and the flags CY and OVF are cleared.

Example:

CLB R47 Clears R47

Section 6: Writing Binary Programs

JSB

When a subroutine jump is made, the control of the program 1is given to a
set of instructions with the intention of returning to the program at
the next instruction after the jump was made. In order to return, the
program counter for the next instruction must be stored. This return
location is pushed onto the R6-R7 stack, and when the RTN instruction is
executed, it is loaded back into the program counter. & subroutine jump
that is made to a relocatable address in a3 binary Pprogram must be
indexed from the absclute start of the program (BINTZB).

Examples:

JEB =NUMVA+ Increments the program counter (PC) to
the address of the next instruction
after the J5B. That address is pushed
onto the R6-R7 stack, and the PC is
lpaded with the address the jump is to
be made to WNUMVA+ (located at Z22403).
When the system executes a RTN, it pops
the address of the next instruction off
of the RE-R7 stack and loads that value
inte the PC,

JSB %14, ROUTINE Makes a jump to ROUTINE by adding the
value of ROUTINE as a label to the
location of the start of the program
(BINTAB) which is stored in R14-R15.
In all other aspects it is the same as
JEB=,

Jump Instructions

This group of instructions gives the capability for branching contrel to
addresses that are defined by the label that the jump is being made to.
If a condition is true, then the Jjump is made; otherwise, the jump is
ignored and the next instruction is executed. These branching
instructions use relative addressing. Labels that are used must be
contained inside the program. The program counter (PC) 1s loaded with
the value of the address, and program contrel moves to that location in
the program memory. The maximum number of bytes that may be jumped is
177 octal (forward) higher-addressed bytes or 288 octal (backward)
lower-addressed bhytes.

Each conditional jump has a complement, except the jump on no overflow,
which jumps on the opposite of the relation. For instance, the jump on
negative is simply the opposite of the Jjump on positive and may be used
in the same circumstances depending on the personal preference of the
programmer. All of the Jjumps will be discussed.

Section 6: Writing Binary Programs

JMP

The unconditional jump always occurs when executed. It is the only jump
that does not check the status of any system flags.

Example:

JMP ALWAYS Will always jump to ALWAYS, a location
in the program.

JNO

Since the system has no jump on overflow, a jump on no overflow must be
used for both cases. If the OVF flag 1is set to 1, then the Jjump is
ignored and the next instruction will be executed. In the case of an
overflow, the code after the jump instruction will perform the necessary
steps, and then if necessary, continue the program.

Example: If a flag {(E) is to be incremented when an overflow occurs:

ADM HZH,R3D Executes the operation that may set
an overflow (OVE).

JND HESUME If there has been no overflow, the
program will begin at RESUME.

ICE If JNO is ignored, then an overflow
has occurred, and the program
increments the E flag.

RESUME BIN Hesumes the program.

JBS, JNG

Jump on positive and jump on negative are made by checking the status of
the most significant bit (NG) flag and taking the "exclusive or" of NG
and the OVF. In the case of two positive numbers added together
resulting in a negative number (NG=1), the jump on positive takes that
into consideration and would jump because NG=1 and OVF=# and the
"exclusive or"™ would be 1 and the jump would be made.

Example: If R2Z0 contains P73 and R30 contains 125 then the addition:

ADDITION ADB H2Z0,R38 Adds 873 to 125 (octal) and sets NG=1 and
OVE=H.

JNG ADDITION Since the exclusive OR of NG=1 and OVEF=0
is 1 and JNG expects it to be @, then the
jump will not be made even though the NG
flag says it is negative.

6—4f

Section 6: Writing Binary Programs

JoD, JEV

The least significant bit flag (0OD) shows whether a number is even or
odd. If the number is even, OD is set to @ and JEV, jump on even, will
take place. If the number is odd, 0D=1, then JOD, jump on odd, will
take place. This conditional jump works in binary and BCD modes.

Example: To £ind ocut if the l16-bit binary number stared in R36-R37
is a prime number, all even numbers may be ignored by the
following code:

TSEM R36 Checks to see if the number is even.
JEV NOTPRIME Since the number is odd, it might be prime.

JZR, JNZ

When making comparisons and when decrementing & counter, the Jjump on @
and jump on not @ are useful. If bwo quantities are equal, comparing
them will cause the ZR flag to be set to 1. To simulate & conditional
IF-THEN statement, & comparison is made prior to the jump. To simulate
a controlled FOR-NEXT logp, the loop counter is decremented and the
conditional jump made.

Example: To simulate IF X=B@ THEN RESUME (R2¢ contains 128 octal
which is 88 decimal):

CMB RZ0,=12Z0 Compares HZ8 teo 120, Since they are
equal, the ZR flag is set to 1.

JZR HESUME Since ZR=1, the jump is made to the
location RESUME.

To simulate the FOR-MEXT lcop, the number of times that the loop will be
executed is decremented and @ check is made to see if that number of
loops has been done.

Example: If RZP contains the number of times the loop is to be executed,
then FOR X=1 to 2ZE would be:

DCB R28 After the statements have been executed,
R28 is decremented. If R20 is egual to
zero, the ZR flag is set to 1,

JNZ LOOP If the lgap has not been done the
specified number of times, it must be
done again starting at the beginning of
the statements (LOCP).

=41

Section 6: Writing Binary Programs

JCY, JNC

When the carry flag (CY¥) is set o 1, it indicates an addition has
become too large for the register to handle. This happens often in
subtraction and in comparisons. To simulate the statement IF-THEN with
a "greater than or egual to" or "less than" relation, a compare is made
between the values, and the CY flag is checked.

Example: 1If R28 and R30 contain the first and second numbers to be
included in the compare, then the statement IF QUANTITY1 >
QUANTITYZ THEN RESUME could be:

CME R2@, R30 Compares R2Z0 to R30 by adding the
negative of R30 to R20 and sets the
status flags. 1f R28 is greater than or
egqual to R3P then CY¥=1. If R28 is less
than R3@, CY=@.

JCY RESUME Jumps ta the location RESUME if RZ0 is
greater than R38 (C¥=1).

JEZ, JEN

The jump en E equal to zero and the Jjump on E not equal to zero check
the status of the E register for parsing routines and user defined
flags. In parse routines the E flag will be set toc 1 if the token
searched for is found, and @ if not found. After returning from a parse
routine it is convenient te set an error message or to do another
procedure if the token is not found. Also, if the E register is used as
a programming flag, it may be set on a special conditien te jump to a
procedure.

Example: To demand a numeric parameter at parse time:

JSB=NUMVA+ Try to parse a numeric value.
JEZ ERR Jump if not found te error reporting.
JLEZ, JLN

JLZ: Jump eon left digit @ (left BCD digit).
JLN: Jump on left digit not #.

Example: If RZP contains @11, the following code would take the jump:

ToE R28
JLZ TRUE

B-42

Section 6: Writing Binary Programs

JRZ, JRN

JRZ: Jump on right digit # (right BCD digit).
JEN: Jump on right digit nonzero.

Example: If @11 is in R28, the following code would not take the jump:
TSE R2Q
JRZ TRUE

ARP and DEP Load Instructions

These two instructions are available for loading the address register
pointer or the data register pointer. They are not normally needed
because the assembler automatically generates the &ARPs and the LDHPs
where required.

ARP
Sets the address register pointer te the address register.
DRP

Sets data register pointer to the data register.
Use of R*

Wnen entering source code, you may substitute R* for the AR or the DR in
any CPU instruction. This causes the DRP or the DRP to be loaded with
the least significant six bits of CPU register Bé. The effect is that
the DR and the AR are specified by the contents of R@#. The CPU uses the
DRP1 and ARP1 opcodes to implement this feature.

Example:

LCB E#, = 26 Loads R@ with 26.

LDE R*,R30 Loads CPU register specified by R@.
(which is now RZ6) with the contents
of R3g.

STE R48,R* Stores contents of R42 Into register

(RZE now) specified by K@,
To avoild confusion, Rl is nat allowed in either the DR or the AR fields.

This means that CPU register Rl is inaccessible except by a multi-byte
R operation or when RO=1 and the ARP or the DRP is specified by R*.

6-43

Section &: Writing Bimary Programs

Other Instructions

There are a few other CPU instructions which you can use.

BCD

Sets decimal mode (DCM=1). Arithmetic operations will be in BCD format.

BN

Sets binary mode (DCM=@). Arithmetic operations will be in binary
format.

CLE
The four bits of the extend register are set to 8.
CCE

The extend register 1is decremented by 1. This instruction is always a
binary operation, regardless of the DCM flag status.

PAD

Restores ARP, DRP, and status (usually after a BSAD instruction) by
popping them off the stack. The stack pointer is decremented by three,
and all status flags except E are altered by the contents of the three
stack locations that are read.

The first byte processed is read as the least LSB in bit 8, the RDZ bit
1, Z in bit 2, LDZ in bit 6, and MSB bit 7. The second byte is read as
the DRP in bits ©-5, DCM status in bit 6, and overflow flag in bit 7.
The third byte is read as the ARP in bits #-5, carry flag in bhit &, and
overflow £lag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

5P —»= [(DVF| CY ; ; .Mfl P ,
Inereasing OVF | DCM AP
Addresses iy e gy |(r—
MSB| LDZ | 0 0 0 Z | RDZ |LSB
l I I 1 i I i I

f-44

Section 6: Writing Binary Programs

RTN

The subroutine return stack pointér is decremented by two. Then the
return address is read from the stack and written into the program
counter.

SAD

Three bytes are pushed onte the stack to save the ARP, the DRPF, and the
status flags (except E). The first byte contains the ARP in bits @-5,
C¥ in bit 6, and the overflow flag in bit 7. The second byte contains
the DRP in bits 8-5%, DCM status in bit &, and the overflow [lag in bit
7. 'The third byte contains the LSB in bit @, RDZ in bit 1, T in bit 2,
LDZ in bit 6, and the MSB in bit 7. The stack pointer is incremented by
three. ©BStatus is not affected by this operation.

Following a 3AD instruction, the stack contents are as shown here:

Increasing
Addresses

OVF| CY ARP

i i i [
OVF |DCM ORP
mse| [DZ | o | 0 | 0 ! 7 |HDZ|L$E
$p —
i i i i 1 1 H

7 B &5 4 3 2 1 0

6.4 Assembly of CPU Instructions
When the address field of an instruction ceonsists of a DR and an AR,
each source statement 1is usually assembled into three bytes of machine
code. These bytes are assembled in order as:

1. DRP: DRP set to point to LR.

2. ARP: AFRP set to point to AR.

3. Opcode: Perform operation.

A stack push instruction such as PUBD would be assembled and appear as
shown here:

Byte Number Machine Code Source Code

0p0227 110 606 342 PUBD R10,-R6 5

Section 6: Writing Binary Programs

When the address field of an instruction consists of a DR and a label,
a5 in the case of literal direct and literal indirect addressing (such
as, LDMI H3Z, =ADDRS), each source statement is usually assembled intoc
Eour bytes of machine code: :

1. DRP: DRP set to point to DR.

2. Upcode: Perform operation.

3. Low-order byte of literal quantity.

4. High-order byte of literal guantity.
When the address field of an instruction consists of a DR, an AR, and a
label, as in the case of indexed direct and indexed indirect addressing
{such as, LDBI R36,X32,TABLE), five bytes of machine code may be
generated for each source statement:

1. DRF: DRP set to point to DR.

2. ARP: ARP set to point to AR.

3. Opcode: Perform operation.

4. Lew-order byte of address.

5. High-order byte of address.

The ARP and the DRP During Assembly

An optimizing feature of the Assembler ROM is the deletion of
"unnecessary" ARP and DRP instructions during assembly.

If an instruction if not labeled (that is, there is not an entry in the
label field) and the ARP (and/or DRP) 1is already set to the correct
value, the previcusly set ARP (and/er DRP) is not generated during
assembly.

Example:
Byte Number Machine Code Source Code
gEgz27 118 886 342 LABEL POBD R1@, -R6
ARE232 342 POED RL1@,-Ra

In this example, both the ARP and the DRP are specified beginning with
byte 227. Since they are now correctly set for the next instruction,
they are automatically deleted when the second POBD R18,-R6 instruction
is assembled. This results in the machine code shown in byte 232.

Section 6: Writing Binary Programs

Mot all previously set ARPs and DRPs are deleted during assembly. Times
when they are not deleted include:

¢ Labeled instructions: Since a jump from anyplace in code may
cause executlon Lo resume at the label, the first ARP and DHREP
are not deleted after an instruction that centains an entry in
the label field.

e Returns: After executing a subroutine jump, then returning, the
first ARP and DRP encountered are not deletead.

e PAD: Following a PAD instruction, the first ARP and LRP are
not deleted.

Pseudo-Instructians

Instructions to the assembler are pseudo—instructions. Each may be
entered by typing a pseudo-opcode in the same field as the opcode for an
instructicon, followed by any additional operand.

Pseudo-instructions perform these three functions when encountered
during assembly:

e Assembly control.

@ Data definition.

¢ Conditional assembly.
AHBS base address
If the base address is less than 188088 (octal) then a ROM file will ke
generated at assembly time. Otherwise a binary program file will be
generated and all labels are given absolute addresses, not relative
addresses. The ABS statement must precede a NAM statement, il used.

FIN

Signifies the end of the source code. This pseudo-instruction is
required for assembly.

GLO file name

If no file name is spacified , GLO declares this source code to be a
global file to be used in the assembling of the current source code. If
there is a file name, it is the name of the global file to be used in
the assembling of this source code. Comments are not allowed on the
same line as the GLO instructicn, and the instruction must precede ABS
and NAM,

6-47

Section 6: Writing Binary Programs

LNE file name

Will load another file ccn:ainiﬁg more Source code and continue
assembling. Allows assembly of larger programs than would otherwise be
possible.

EST
Causes the code to be listed on the current PRINTER IS device at

assembly. The printed 1lines will be truncated at whatever the current
line length is.

An address that 1is undefined when its label is encountered will be
printed in object code as 326, 336, or 377, depending upon whether it is
a DEF, a relative jump, or a GTO statement.

NAM binary program #, unguoted string

Sets up the program control bBlock for a binary program. Should be
preceded only by GLO, ABS, LST, UNL, DAD, EQU, or comments.

ORG address

Specifies a base address which is added to all following defined
addresses (DADs). This pseudo-instruction is most useful in global
files,

UNL

Turns off the 1list feature which was turned on by the LST pseudo-
instruction. After an UNL, code is not listed during assembly.

Pseudo-Instructions for Data Definition

ASC numeriec value, unguoted string
ASC guoted string

Inserts into the object code the ASCII code for the number of characters
specified of the unguoted string. Inserts the entire gquoted string.

ASPF numeric wvalue, unquoted string
ASP guoted string

Same as ASC except that the parity bit of the string's final character
is set. {During operation, the system determines the end of an ASCII
string in some system tables by checking to see if the character's
parity bit is set. When the bit has been set, the system assumes the
next character begins a new string or entry in the table.)

6-48

Section 6: Writing Binary Programs

BSZ numeric walue

Inserts into the object cede the octal number of bytes of @'s specified
by the numeric value.

YT numeric value [,numeric value...]

Inserts literal values into the object code.

DAD Label DAD address

Assigns either an absclute address or a constant to a label. DAD and
EQU are similar; DAD is usually used for addresses, while EQU is used
for values other than addresses. ORG affects only DADs.

DEF label

Inserts the two-byte address asscciated with the label.

EQU Label EQU numeric value

Assigns either an absclute address or a constant to a label. This
instruction is similar to the DAD pseudo-instruction.

GTO label

Generates four bytes of object code which load the program counter with
the address, minus one, of the label. The label must be an absolute
address.

The CPU relative Jjump instructions can cause jumps of from 177 (octal)
to —208 (octal) memory locations. The GTO pseudo-instruction is useful
for jumping beyond this range.

The GTO instruction is primarily for use in ROMs. It should not be used
in a binary program unless that program has been declared an absolute
program.

VAL label

Inserts the aone-byte literal octal wvalue associated with the label.

Eseudo-Instructions for Conditional Assembly

These instructions permit you to contrel assembly with conditional
assembly flags. A conditional assembly flag has the same constraints as
a label--it can be no more than eight characters in length, and the
first character cannot be a digit.

A=-49

Section 6: Writing Binary Programs

A conditional assembly flag is treated the same as a label by the
system. (For example, an assembly flag can be located by a label
search.) For this reasen, & conditicnal assembly flag should be unigue,
and should neot duplicate a label.

AIF assembly Elag name

Tests the specified conditional assembly flag and, if true, continues to
assemble the following code. If the £flag test false, the sScurce code
after the flag is treated as if it were a series of comments until an
EIF (end of conditional assembly) instructicn is found.

CLR flag name

Changes the specified conditional assembly flag to false.

EIF

Terminates any conditional assembly in process. Unly one conditional
assembly can be handled at a time. If a second one is encountered while
the first is still actiwve, the second will override the [Eirst.

EET flag name

Sets the specified conditional assembly flag to true.

6.5 Multiple Binary Programs

There can be up to five binary programs in memory at one time. There is
a table of two-byte addresses called BINBAS that contains the base
addresses in the order in which the binary programs were loaded. Bytes
that are not used are zero. Anytime the system calls a binary program,
it first fetches from BINBAS the base address for that program and
stores it in BINTAB.

The ASCII keyword tables and the binary programs are searched in the
order they are loaded. This is alse how initialization routines are
called.

Section
VII

SAMPLE BINMARY PROGRAMS

7.1 Introduction

This section includes five binary programs. In addition to being listed
here, these programs are on the disc you received with your Assembler
RCM. Source code file names end in "S8", while object code file names

end in "B."

Each of these programs 1is designed to illustrate assembly language
programming, and each provides a function or keyword that is useful to
the HP-87 operating system.

At the end of each program listing is a table of system routine
addresses used by the program. Inserting the disc and placing a GLO
GLOBAL pseudo-opcode near the beginning of the program eliminates the
need for these addresses in some of the sample programs. Certain
programs call system routines whose addresses are not available on the

global file disc.

The string highlight program includes instruction on how to use a binary
program following the listing.

Section 7: Sample Binary Programs

F

String Highlight

Source Code: HGLSS

Object Code: HGLSB

1000
1070
1020
1030
1040
1052
1060
1070
1080
1030
1100
111
11202
1130
1140
1150
1 1B
117%0
1180
1130
1290
1210
1220
1230
1240
1250
250
1270
1288
1250
1300
1310
1320
1330
1340
1350
1380
1370
13BD
1350
1400
1410
1420
1430
1440
1450
1480
1470
l480
14903
1500
1510
Y520
1530
1540
15540

i

[FEr R R e RN EE LR D R A EF IR RERR R
B Thrs Binary program smplemant
|'# which accepis one =%ring parame
I* the most signifioant hit of eac
= This Binary program 1% = tran
|®% from the HP=-85 Azsemblar Fom ma
I+

| % (g) Hewlatt-Packa
|+

I'# An example of how this function
|a

1= 100 THPUT RS
| & 110 DISE HCLS (A%
| =

| #F FEF FF P E 5 X FEF TR AT o AR AT AT
HREM 53, HGLEI M [
DEF RUSTIM [
OEF -ASLils |
DEF PARSE !
OEF ERMSG |
DEF INWIT [

EEEFAERFEEEERAEFEZEZIZ I EBRAEFEZFZRER &

5 a-gtring function called HGLS
ter cand returns that strinag with

h character sat.

sliation of the UDLY bimary program
nual,

rd Ca. 188Z

*
#*
%
*
*
*
E3
+
might be used 1s: *
*
x
*
#
"

-il#iiil'itii}Tik*ﬁﬁilifk*f!#i****;
SET UP THE PROGRAM CONTROL BLOCH
ETR TO RUMTIME ADDRESS TRBLE

FTR TD KEYWORD TRBLE

FTR TO PRRSE ADORESS THBLE

FTR TO ERROR MESSAGE TRBLE

FTRE: TD INIT ROUTIME

!**+L++i4§¥‘****4F§+§ii;h**éi4+i+T**i*****‘*+*+&++***§*+++++++f+ff{if.

FHREE B5Z D |

WO PARSE ROUTIMES

I T T e — & - & T e

RUNTIf BT 0,0 | DUmMMY TOK# 0 RUNTIME RDORESS
DEF REv, | TOK# 1 RUNTIME ADDRESS
OEF HGLS. | TOK# 2 RUNTIME ADORESE
BYT 377,377 | TERMINATE RELOGCATION
| FF e F e e FE IR F TR RS b el a3 48 st A sl R R R RN S L R a F FE A RS r e T EFFF T
RSCI1S ASP "HGLEE" ! KEYWORDO ®1
AP "HEGLS" ! HEYWORD ®Z
ERMSG BT 37F | TERMINATE ASCI1 TRBLE & ERMSG THELE
| s s s S IR NERES L 54255 e - EEFEFETE I LT R T CF LRI IS T AT EEFFT TR TH
IHLT RTH PO INITIARLTZATION TO BE DOME
R e 1
BY'T 30,56 RTTRIBUTES (% FUNCTION, 1 & PARAMETER)
HiGL§ . POME 'Ra5;, ~R1:& FOF STRIWG RODRESS OFF OF STACK
POMD B30.-R1Z I GET LEWGTH OF STRIMG OFF 0OF STACK
3TH R3O, RES I LEHGTH MEEDE THO BE IMW 55 FOR “"RSMEH-"
CLB RSF ! ZERD QUT MSE OF RESERYED LEMGTH
1SB =RSMEM- I G0 GET SOME TEMPORARY MEMORY
PlME RI0, +F12 ! FUSH LEMGTH BACK ONTO THE R132 ITRCK
FuMB RES,+R12 | PUSH BOORESS RETURMED BY RSMEM ON STALCK
BIHM ! MAKE SWURE OF ®MATH MODODE FOR LOOP COUNTER
LOME R7P3, *PTR1 - I SAYE WYALLE OF IPTR1
PUMB R?S5,+RE 0x HE STRCK
LOB R34,=200 ! SET. UP- HMARSK
STHMD R45,=PTR1T - | RODRESS -OF 1st BYTE OF ORIGIMBL STRIMNG
STMD RES,=PTR2- | RODREES OF 1=t BYTE 0OF RESERVED METMORY
MORE OocH R [DECREMENT LO0F COUNTER
IHC DOKE JIF MO0 CHARRCTERS LEFT
LOBI REQ,=PTR1- [GET MEXT CHRRACTER FROM CRIGINAL STRING
ORE RZ0,R34 ! BET MEH OF CURREWNT CHARACTER
STBI RE0, =RTRE- I ETORE HI-LIGHTED BYTE TO RESERVED MEMORY
IMF MORE G0 GET SOME MORE
DO HE FOMD R7?5, ~RE RETRIEVE OLD VRLLUE DF FPTHR1

>

Section 7

1560
1370
1580
1590
16040
1610
16240
1630
1840
1E50
1860
(L Fas
feEQ
1590
1700
Lea
1720
P73
LA

Sample Binary Programs

STHD R?5, =PTE1- | AND RESTORE IT SEFORE R TURHING
RTH | DOOME
e T
BYT ;56 | HO PARAMETERS; STRINMG FUNCTIOH
REY. BIN | FOR RDORESS MATH
LOM R43,=40D,0 | LOAROD THE LEMGTH OF THE STRING
DEF DRTE- [AMD THE ADDRESS OF THE =STRIHG
ByT 4 | (MAKE IT A THREE BYTE ADORESS)
ROMD F45, =BIMTAE | MRKE THE ADORESS RBSOLUTE
PumD R43,+R1Z I PUSH. IT 70 THE OPERFATING STECE
RTH | DOME
DATE RSC “40. 102 weR 2891 ol drakcaP-tre|lweH JC0"
D8TE - BSE O | PLACE HOLOER FOR RAODRESS LORD
T el L L & R e o SR S M E e
BINTRE DAO 104070 i
RSME M- DAD 31741 |
PTR1- DAOD 177711 | DEFIME RODRESEES
PTRZ~ DAD 177715 |
FIn | TERMIMATE RSSEMELY

Eection 7: Bample Binary Programs

l. In assembler mode load the socurce code:
ALDAD "HGLSS" [END LINE]
2. To assemble the source code:
ASSEMBLE "HGL3B" [END LINE]
If you want a printed copy of the object code as it assembles, you
must designate s PRINTER IS device (that is, PRINTER I5 7dl).
There must also be an LST instruction at the beginning of the
code. ‘The object code is now assembled and stored on your disc.
3. To use this Eunction, return to BASIC mode. Type:
BASIC [END LINE]
4. Load the object code. Type:
LOADBIN "HGLSE"™ [END LINE]
5. Before running this program you may wish to set & breakpoint.
With the system monitor inserted, type:
BEP REL (18&)
The REL instruction sets the breakpoint at an absclute address in
memory. The breakpoint information will appear on the CRT. It
will alsoc be printed if you specify a PRINTER IS device. For
example:
BKF REL (1@g),781
The program will now halt at the address specified in the
breakpoint. Your breakpoint will look similar to this when
HGLS ("string") is typed:
PLC nR AR 0% CY NG LZ ZF RZ 0D DC E BEF1 BKPZ FTR1 PTEZ Romn
1143343735 0 @ 0O 1+ & C 1 0 Q0 114333 000000 Q3700Fs CITA0YT3 Q00
21 2 3 4 = & 7 MEM 11423310
ROG DO5 00t Z4F 053 3394 ZZ0 100 204 110 1TA7 114 102 254 000 QOZ 0593 HGLB, +
R1Q 307 200 950 212 075 210 001 091 110 107 114 044 102 040 040 040 HGLIB
R2O 233 230 053 0165 030 013 310 200 Q40 040 9cG0 GO0 Q00 GO0 000 QO
RI0 041 QDO 324 F3I0 267 23O 233 230 233 230 PV Z3IC 207 230 277 230 Pan
R40 015900 00 QOO OOD UB0 3B0 OO 320 230 F29 £30 233 230 017 EZ3. PO
RIC 110 053 230 0DE 000D 047 QU U J2q 230 37T ATV 11w 107 140 T EEHGL¥
RSO Q00 oo0 000 000 000 041 380 OO 302 Y10 107 114 244 377 238 O30 BHGLYW
RYG. Q16 D04 000 000 00O 017 3E0 001 OSE 145 012 343 130 343 053 243 e c¥e-H

Section 7: Sample Binary Programs

After execution is halted at the breakpeint, you may single
step a specified number of instructions using the TRACE
instruction. For example, to trace the next 18 program steps,

type:
TRACE 1@

The TRACE instruction will give you status information for
each of those 1@ steps, 25 well as the contents of memory.
TRACE 18 will output the following information:

FC DR AR OV CF MG LZ 2R RZ: 0D D E BFY BEP2 PTR1 FTRZ =0l
114335 5% 55 & 0 LO07) i g I - + < " 194339 Od0oodd DI70014 CATO01Y Qoo

RC DR AR OV C¥ MG LZ ZR 'RZ 0D DEC E B P BKR2 PTR1 FTREZ FOM
DITF4Y 5F 8% 0 O B 1] 10 0 90 174335 000000 DIFOO14 oIV0013 000

Fiz DR AR 0% CY MG LZ 2R REZ OO DC £ BKFI BkRE PTR1 FTR2 ROM
031742 57 35 O 0 0 1 1 1 £ 9 40 031741 400000 0370014 0ATO013 4G

PC DR AR OV Cy NG LZ 20 RZ.0D0 DOC E BKP1 BrP2 BETRE1 FPTR2 ROM
D3FT43 5F B O O o % i | o 0O O 031742 Q00000 Q370014 0370013 oo

PC DR AR OV CY NG LZ ZF RZ 0D DC & BEP1 EKP2 FTR1 PTRZ ROM
D3t744 B85 B 0 0. B 1 1 0 0O 00 031743 000000 Q370014 03Y0013 000

PC DR AR OV CY¥ NG LZ ZF RZ2 00 DC E BEFP1 BEPZ FTR1 FTRZ ROM
02747 65 558 O O © v 4 8 1 9 0o 0317494 QOO000 9370014 O3PO013 080

P DR AR OV C¥ NG LZ EZR RZ: 0D DC E EKF1 BHPZ FTR1 FTRZ ROM
Q03375065 33 0 4O o0 7 4 G 1 @ GO 031747 000000 4370014 A3PO0II 00O

PC DR AR OV Y NG LZ 28 B2 o0 DC E BKP1 BEFEZ FTR1 BTRZ ROM
039751 85 85 © @ 0 1 & G D 0 00 114333 000000 43F00IE QIFO0N3 000

8] 1 Z 3 4 5 E 7 MEM 11423310

RS 005 001 242 083 351 @53 102 204 TIO TO7 114 1062 254 a0 Q02 053 HGLE, -+
R1O 307 200 30212 073 210001 oo 110 107 114 0d4 102 040 080 940 HGELSB
R2Q 233 230 093 016 049 013 310 200 o400 040 009 000 040 000 OO0 000
REIg D41 Q00 324 230 287 230 233 23D 233 230 ¥y 230 3¢ 230 27F 230 LA
40 015 000 000 Q00 000 OB0 380 O3 320230 A1 2E0 233 230 01T 233 P Q
RSO 110 Q53 Zao Q02 QOO0 Cg4Y QOO0 OG0 324 230 JAFT IFT V10D 107 114 Q44 T REBGLS
REC OO0 Q00 000 000 000 ZEE 231 Q00 F0Z2 170 107 11s5 244 377 E3& 030 ‘BHGL%m
RYO° 01F Q04 000 QOO 000 Q17 350 001 056 14% 012 343 130 343 055 243 .e cMe-u

To continue execution after a breakpoint or after a TRACE
instruction; press [RUN].

&. To run this program without halting, type:
HGLS ("string")

after the LOADBIN instruction.

Section 7: Sample Binary Programs

Tad CRT Control
Source Code: ALPHAS

Obiect Code: ALPHAB

1000 THEF SN EEEEEEF R L SR E IR AL AL IR EE RS FFFERER R A SR AL RARF X ZIF LI IRRIEEE

1910 1'% This binary program 'mpglements three CRT control statements) *
1020 1% AWRITE I<row?,fcalumndl[,{st1ring>] *
1030 |* AREAD <string variablaek *
1040 | = START CRT AT <absalutm line B} ®
1050 |% AMRITE allows wou to do one of thres things! *
1080 |# 11 force ALPHR mode without mowing the cursor position *
1070 | = Z) force ALPHA mode and mowe the cursor 10 & positton whichs
1080 |* Is relative to the togp left of the current screen *
1080 | * 1 force ALPHA mode and mowe the cursor to new positian *
1100 | = end cutput a string at that loeation, leawving the cursor#®
1110 | = positiorned at the beginning of the string. *
1120 % In all cases the curser is not actually displaved, urtil some #
1130 | = gthear normal cursor mowvement occurs. *
1140 !+ AREAD allows you toc read s string of characters from the CRT into *
1150 I% a string wariakle, Usuzlly the cursgr will have been mowved to *
116D I* the correct position with the AWRITE statement. *
1170 1% STRRT CRT AT allows wou to scroll the display up ar down or Jump %
1180 1= to an entirely different pags, all under program control. *
1180 % MOTE: this routine does not change the curser’s location in *
1200 '% CRT memory, so the cursor may get lost off of the screen when *
1210 = this command is used., It can ke brought back by use of the =
1220 1% AWRITE statement, or by using the Home Cursor key. o
1230 !# ALPHAE returns the revision date of the Binary program. *

1240 |8l N A AR S S Y A A AR P RS A AR R A F AR AR F R FFF LR RR RS SRR RS

1250 |+ %
1ZEQ !# An exeémple of How this Binary might be used in BASIC 15 *
1270 |= 110 FOR I=1 TO 1000 *
12680 |= 120 START CRT AT IP(REWMD=500 *
1290 |'* 130 AWRITE RMD*16,RND#80 & BRREAD A% *
1300 1= 140 AWRITE RHO*1E6,RND=®B0,R% *
1310 |= 150 HEXT I -
1320 % This s guarantesd 2o turn anmy Intelligent display into nonsense, %
1330 |= *
1340 | #Fm s v N R R A S N RN A S R F RN RN NS RN R R R R AR RS FF R FRFTH
1350 MYBPGMa EQU 52 | BIWARY PROGRAM MUMBER

1380 HMAM 52 ,A8LFA | WAME BLOCK FOR: BINARY

1370 DEF RUNTIM ! ADDRESS OF RUWTIME RDORESSES

1380 DEF RSCIIS | ADDRESS OF ASCITI TABLE

1390 DEF PARSE ! ADDRESS OF PARRSE ADORESSES

1400 DEF ERMSG ! ADDRESS OF ERROR MESSAGES

1410 DEF INIT ! ADDRESS 0OF IMITIALIZATION ROUTIKE
1420 RUNTIM BsSZ 2 ! PLACE HOLDER

1430 DEF ALFMA. ! RUWTIME LABEL FOR “FAWRITE’

1440 DEF RRERD. | RUNTIME FOE “RRERD"

1450 DEF STRARTHT. I CRT TOPF LINE

1460 DEF REWV. | RUNTIME FOR REVISIOM

Section 7: Sample Binary Programs

1470
1480
1420
1500
1510
1520
1530
1540
1550
1580
1570
1580
1590
1600
1810
18620
1630
1640
1650
1680
1670
1680
1690
1700
1710
1720
17230
1740
1750
1780
1770
1780
1740
1800
1810
1820
1830
TBa0
1850
1BEO
1870
18RO
1890
1300
1810
1920
1930
18940
1950
18980
1970
THBO
1890
2000
2010
ZO0Z0
2030

FRRSE BEZ 2 | PLRCE HOLDER

OEF ALPHAF | PARSE LABEL FOR ‘AWRITE”

OEF ARERDR | PARSE LABEL FOR “AREAD*

OEF STRRTRTF | PARSE FOR TOF LIME

By T A, 0T | END OF RELDERTHBLES
| R R F P R R R R R F L R R S R RS F R F A FF AT I I IR F IR IR E R R RS
RSCIIS BsSZ O

ASP "AWRITE! | TOKEM 1
HSF " A/RERD" | TOKEHW 2
ASP "START CRT AT! | TOXEHM 3
ASP " ALFHRRE" | TOKEM 4
ERMSG BYT 377 | EMD OF RSCII TREBLE
I T T e L)
IMIT RTH | MO INITIALIZATION TO BE DOME
B o ok b o
STRRTATF FUBD R43, +RE | SAVE TOKENH
JSB =HUMVA+ | TRY TQ GET R HUMBER
JEZ ERRSS | GOT AW ERROR
OkaY LOB R53, =371 | BPGM TOKEN
STHI R53,=FTRZ- | STORE IT
LDOB RS3, =MYBEPGMs | GET MY BINRRY HMUMBER
STHI R53,=FTRZ- | STORE 1IT
FCBD RS3, -RE | GET THE TOKEM MUMBER
STEI R53,=FTRZ- | STORE IT
RTH | ALL DONE
| XXX EEEAEEEFEEEEEFE L EF L LS L L LR E T LT R EEFE R R Z A AL AR R R AR R A EE XL XX T X XXX R LR
ALFHRF PLUBD R43,+RE | SAVE TOKEW HUMBER
JSH =HUMYA+ | TRY TQ GET & HUMBER
JEZ OxAY [MUST BE JUST ‘AWRITE"
ISHE =GETCHA | DEMAMD A COMMA
ISE =NUMVAL | DEMBMD A MUMBER
JEW DERYZE | JIF BOTH HUMEBERS THERE
ERRGB POBD R43, -RE | CLERAM UP RE
ISH =ERROR+ | ERROR HAMIOLIMG ROUTIMNE
BYT 880 | ERFROR MUMBER
OKEYZ CMBE R14,=54 | MAKE SURE OF A COMMA
INZ OKAY fOJIF JUST "RAWRITE X,7Y"
JSE =STREX+ | PARSES A STRING EXPRESSION
JEZ ERRAS i JIF MO STRIMG TO ERROR
IMP OKAY | OTHERWISE FIMISH UP THE FRRSING
| R EEEF R EEE AL AT IR AT T I AT AT A EFF AT TR TR TR LSS EI T LS XX FAEEE
ARERDF FUBRD R43,+RE ! SAVE THE TOKEMN
ISH =SCAM I LET'S DO H SCAHN
ISH =STRREF I MUST BE 'A STRING REFEREMNCE
IMP OKAY | FIMISH THE PRRSE
I B b L o R R
EYT 0,58 | ‘'NO PARAMETERS, STRIMG FUNCTION
REW, BIM | FOR ADOMD R45, =3INTRE
LDOM R43,=400,0 ! LOAD THE LEMGTH OF THE STRIMG
DEF DATE - | AMO THE AUDRESS OF THE STRIMG
E¥YT 0 { (MUST BE THREE EYTE AODRESS)
AOMO R45, =EIMNTAEB | MAKE THE RADDRESS ABESOLUTE
FUMD R43,+R1Z | PUSH IT ALL ON THE OPERABTING STACK
RTH | DOOME
ASC "30,102:weR 2891 .oC drakcaP-ttmlwsH 1ci"
ORTE BSZ O | PLACE HOLDER FOR THE LABEL [ADDRESS)
| BEA ARG E AT R L EE LB LR R FE R A A FF T R B LI FF I A I I E R AL TR EFEFFRFF RN BB AL B LR R LR

Section 7: Sample Binary Programs

2040
2050
20E0
2070
ZOB0
2080
2100
2110
TI1Z0
2130
2140
2150
21E0
Z1vQ
2180
2190
2200
2240
222l
2230
2240
2230
22E0D
2270
2280
2280
2300
2310
2320
£330
2340
235

2380
2370
2380
2380
2400
2410
Z4Z0
£430
Z440
2450
2480
2470
2480
2490
2500
2510
2520
2530
2540
2550
2580
2570
2580
2530

ALFA.

INALPHA!

A-OMLY

CRLCADR

GOT-1I7

ALOF

HO -RO

| #EXAR XTI X FEEEAEXX L F L X EEEZR XL R XA XX XA BE R EERHER TR E XL EEEEE XXX R RN

ARERD.

IHALPHAR

BYT 241

BIM

LDBDO R37,=*CRTSTS
JBES IMALPHA|

JSB =ALPHR.

CHMMO R12,=TOS
J1ZR MWO-RADR

JSB =DECURZ

JSB =HMCURS

LOMD R14,=BIMTAE
CLM R43

LDM R2Z0;R12

SBM R20,=25,0
CHMMD RZ0, =TOS
JHZ A=-0OHLY

POMD R43,-R1Z

STMD R43,%19,3SAV-§

JSE =THOE

OCM RSE

JHNG GOT-IT

ADM R4B,=120,0
IMP CALCRADR
STM R4E,RZ4
JSB =MONCRS

LDMD R43,%14,CAv-%

LOM RSE,R43

JZR HO-ADR

STHID R4S, =PTRZ
LOM R3B,R43

LOBI R3Z,=PTRZ-
JSH =CHKSTS

STBD R3Z,=CRTORT
OCH R3E

INZ ALOP

RTH

BYT 241

BIN

LOED R3I7,=CRTSTS
JFS IMALPHAR

JSEB =HLFPHHA.

JSB «DECLURZ

FOMD RT3, -R12
5TM R73,R53

PUMD R73,4+R12
CLE RS7

IS8 =RESMEM

STH RE35,RE73

5T RB53,R?5

5TMOD RB3,=PTRZ
PUMD R?3,+R12
TSM R3S

JER DO-STO

LDMD R34, =CRTEYT
PUMD R34 ,+RB6

JISE =BYTCR!

BASIC STATEMEMT
FOR MATH

LHECK CRT STRATWS

JIF ALRERDY IW ALPHA MODE
IF WOT, MAKE IT S0
AMYTHING OM THE ®1Z
JIF JUST “AWRITE”
KILL BOTH POSSIBLE CURSORS

MOYE THE CURSOR TO THE HOME POSITION
BECAUSE I‘M RELATIVE

FAKE © STRING LLEMGTH

COPY OF RiZ

SUBTRACT £5

WHAT*S OW R12

JIF OHLY X,Y

GET LEWGTH AWD RODRESS OF STRING
SAVYE LEMGTH AWO ADDRESS

GET TWO BIMWARY HUMBERS OFF OF R1Z
DECREMENT “¥*

JIF AOORESS FIGURED QOUT
AOD TO GET TO HERT LIME
TRY FOR RMOTHER OME

COPY RADODRESS DISPLACEMEMNT
MOWE THE CURSOR

GET LEWGTH AMDO RDORESS OF STRING BRCK
GET LENGTH

JIF WO LEMWGTH

SET MEMORY POIWTER TO STRIMG ADDRESS
GET LENGTH

GET A CHARARCTER

WRIT FOR CRT NUT BUSY

STORE IT

AMY CHARACTERS LEFT

JIF THERE ARE

ALL DOME

STRCK

70 2B

BASIC STRATMEMNT

FOR MATH

SET CRT STATUS

JIF ALREADY IW ALFHA MODE
IF HOT, MAKE 1T S0
KILL THE CURSORS

GET STRING STUFF

COFY TO 55

PUSH THE STUFF BRCK
CLERR MSH

LET*S GO RESESMVE SOME
COPY 55 70 75

COPY SINK RODRESS

SET MEMORY POINTER
FUSH STRIMG STUFF OMTO RtZ
HOW BIG CAM I GO0

JIF ©

GET CURREMT FPDSITION

SAVE IT

SET CURREMT POSITION

MEMORY

oect

2600
ZB10
2620
ZB30
2640
2650
ZBEED
2B70
2E80
2690
2700
2710
2720
2730
2740
2750
2780
2770
Z780
27an
2800
ZE10
2820
2830
2840
2830
2860
2870
2880
2830
2300
2810
2320
2330
2340
2350
286G
2370
2980
28930
3000
3010
3020
3030
040
3050
080
3070
308G
3030
100
110
3120
3130
3140
1150
3160

ion 7: Sample Binary Programs

RLOOF J58 =IMCHR | GO GET A CHRRRLCTER

STBL R3Z,="PTRZ- ! STORE IT

158 =RTCUR, I MOYE 1 EYTE

OCH RSS I ARY FMORE

JHE ALDOP | JIF THERE RRE

POMO R34, -RE | GET OLD CRTHRYT BACK

J5B =BYTCRI | SET CURRENT POSITIOM
0Do0-5T0 ISB =~STOST | SAVE IT AWAY

RTH | ALL DONE
| B R R R R R R R R R R R I P F R F R R R AR T F R R R R R R R R R R R R A R F R F T FFFFF I FTFFEFFFFEFE
| * START CRT AT THE SPECIFIEDR WUMBER *
R T o T T e s

BYT 241
STARTAT. JSB =0MWEBR ! GET A WUMBER OFF OF R1Z2

BCOD | FORF MATH

LLM =H | #18

BIH | FOR THE REST

5TM Re,R# | COPY IT

LLM R&# | #32

LLM R4 | %54

AOM =4 ,Rs | =80

STM R#,Re | COPY TO 48

LOMD R#,=RASLZE | GET ALPHR SIZE IWTO 7B

DRF R4E ! GET RERDY FOR “MOD"

ISB =MOD | MOGD IT

STM R#,R34 | COPY RESULT 7O 34 FOR “SADT

JSH =5SA01 ! SET CRT START ADORESS

RTH | ALL DONE
B L
SAV-§ BES 5 | 'SAVE RARER FOR RLPHA

Bt ix ittt st bRt m s s e s s e Y
HUMY A+ 0RO 22403

GETCHA DRO 23477

HUMY AL DRD 22408

STRE=P DRD 23724

ERROR+ 0RO 10220

PTRE - 0RO 177715

SCAM ORD 21110

STRREF DRD Z405E !
STRE =+ DRO 237214

BINTHE ORAD 104070 |
CRTSTS DAD 1?7702 !
OMEEB DRD 12153 |
PTRZ DRD 177714 !
CHKSTS ORD 13204

CRTERD OARD 177701 !
CRTOAT DRD 177703 |
RLFPHA, DRD 12413 |
TOS ORD 101744

DECURZ 0RO 12487 |
HMCURS DAD 13661 !
TWOE DAD 567460 |
MOVCRS DaD 13771

RESMEM DAD F1741 -
CRTEYT DAD 100205 -
BYTCR! DAD 140083 !
IMCHR DAD 14242 1

DEFIME ADDRESSES

=9

Section 7:

KN Rrge]
3180
3130
IZ00
3210
3220

RTCUR:,
STOST
RSIZE
SAD1
moo

0ARD
ORD
0RO
oRD
0RO
FIN

13631
46472
104744
13723
14218

Sample Binary Programs

TERMINATE ASSEMBLY

Section 7: Sample Binary Pregrams

7.4

Line Input

Spurce Code: LINPUTS

Object Code: LINPUTB

10
20
3G
40
=18
g0
70
BO

100
110
120
130
144
15C
160
170
180
1o
200
210
220
230
240
250
280
ZF0
280
290
oo
a10
320
330
340
350
360
370
380
330
q O
$1G
420
430
440
430
460
470
480

E*******ii*ﬁ**{*****iii}iii*****;lI**********¥****&*¥i*f!¥¥**¥*********

| % *
| % A KEYWORD THAT IS PARSED INMTO MORE THAM OHE TOKEMN *
| % -
| * A TOKEM WITH A CLASS OF 44 (MISC IGMORE KT DECOMRILE D *
|* that makes it invisible when the praogram 15 [isted *
| % -
| = {c) 188 Hewlett-Packard Co. *
|- *
| * This bipary program implements the BRASIC stazemsnt "LINPUT® 3
I# which acts sxactly the same as the BASIC statement "INPUT" sxcept ¥
f# that 1+ will enly =llow you te input & string walue and that ¥
1% string walus may contain commas andsor guotes, The keyuword stands #
% For Line INPUT, ms 1t =llows the inputing of a line regardless ¥
|# af what characters are in that)ine, *
| % *
B Ty P P s e R e e s e Rk e il il s
| * ®
l# An =xample of how a BASIC program might use LINPUT |sd *
I ¥ o
F# 100 DISP "Address aof destination'; *
L& 110 LINMPUT Dest_addr$ &
i# 120 FRINT# 1; Dest_addr$ *
1% *
R R R TR A A FFFEFEFF I I I TR R AR ISR FATFFFF IR FF IS L ¥R E 2

MAM 51, LINPUT | SET UP PCH, BPGM # I3 31

DEF RUNTIM | POINTER TO RUMTIME RODDRESS THBELE

DEF ASCIIS | PORINTER TO THBLE OF ASCIT KEYWORDS

OEF PRRSE | POINTER TO THBLE OF PARSE AODRESSES
!

OEF ERMIG POIMTER TO TARHELE OF ERROR MESSAGES
DEF INIT | POIWNTER TGO IWNITIALIZATION ROUTIMWE

L Lt Lt T e s S s P PP e b L P s s bt b S d

I
1%
L
1%
|
i
L
| %
| %
| %
| =
| %
| %
| %
| #
| %

The way an INFUT statement works in the series 890 computers s =
this: the keyword 1&g actually parsed inio two tokens, so the job *
of doimg an INPUT is split into three parts; two are performed by #
the two IMPUT tokens and the third 1s performed by the system. *
Tha first of the two tokens ocutputs & guestion mark to the CRT and#
puts the computer into a pseudo-caloulator mode, which |s known *
as Idle-in-Input, by setting CSTAT (R1E) to a2 4, and then sets thew
immadiate break bits 1n XCOM (R172 using "or"with 24900actall), Then¥
the first token tarminates Its sxscutlon by returning to the *
intarpreter, The interpreter will ses the immedrate bresk biis 1n %
RYT and will drop aut into the exes Loesp. The esxee will see that =
the computer is in [dle-in-Input mode and will simply loop on *
itsmlf, At this point, the user starts typing his input (causing *
keyboard Interrupis, which set bits 1n R17 and SYCWRD, which cause®
the mxmc to0 call the character editor (CHEDIT!, which echoes the =
kays to the CRT, clears the SYCWRD flag, and returns to the exec).#

7-11

Section 7: Sample Binary Programs

490 |# This continues wntil the END LIME kew 15 pressed, which causzes ¥
500 |% CHEDIT to Set a flag ';r the E regtister which will tell ths sxec 3
510 1% that EWMD LINE has been pressed. This will cause the exec to resume®
S20 % execution OFf ths BASIC program by sre-entering the interpreter. %
330 1% The third part of the INPUT 15 carried cut by the second toker of *
340 % the INMFUT statement, It takes the input line, parses and executes #*
350 =% {t, then stores the wvalues in the appropriate wariables, -
SEQ |® LIMPUT statament werks 1n wvery much the same way,., HAS a matter *
970 % of Fact, the first two LIMNPUT tokens do nething but call %
580 |# the runtims code for the first of the IMPUT tokens. The differences
580 |#®# comes in the second token. For LINPUT, all we want to dg is ihnput #
BOO |#* 3 Jitera]l string with no expressions allowed, S0 we have fo nesd %
B10 !'# to parse and sxecute the fnput line. ANl we hawe to do is rewverse ¥
BZ20 I'# the string so that the first character (s at the highest sddress #
B30 1# and thern store 1t 1 the stripg variable, #

BaAll St s s d R R F R F R R F R R F F R R F AR R P P P TR FFFFFEFF I AR RS

ES0 RUNTIM ByT 0,0 I DUMMY ADORESS FOR™ TOKEW HO RUNTIME
BED DEF REWV. | ROORESS FOR TOKEM #1 RUNTIME ROUTIHE
BTO ODEF LINPT. | ADDRESS FOR TOKEM #2 RUNTIME ROUTINE
BEO DEF LIN%. | FODRESS: FOR TOKEM #3 RUTHIME ROUTINE
EE=TaE e R e L e Y S Y,
100 PARSE EYT 0,0 | DUMMY ADORESS FOR KEYWORD #0C PARSE
710 BYT 0,0 | DurMyY FOR KEYWORD #1 PRRSE. (A FUNCTION)
720 DEF LINPRS | RODRESS FOR KEYWORD #2 FARSE ROUTIME
730 BYT 38V,37" | TERMIMATE RELOCATION OF ADORESSES
R S s T T T T e
730 |®% The runtime table has three entries even though the ASCIT and *
TED |'# parse tahles have only two. The third entry 1n the runtime table =
770 |# will only be uged in conjunctlon with the second entry. IF wvou =

7O I#* look at the parse routine far the second keyword (LINPUT) wou wills
730 |#% see that 1t pushes out both tokens 2 and 3, Mormaliy, vou want to *

BOO |* kesp a one for one rfelationship betueen entries in the ASCIT, *

810 |* PARSE, and RUNTIME tables, but thers are times when wyou cam play @&

B0 |* tricks |1he this Lif wou're carefull. *

BIAD [R R AN R AT A A NN R AR AR AR A SRR R R R RS

B40 ASCIIS ASP " LIMPUTG" | KEYWORD #1 (REVISIOMW DRTE FUNCTION)

g50 ASF "LIMPUT" | KEYWORD w2

BED ERMSG BYT 377 | TERMIMRTE ASCII AND ERROR MESSAGE TABLES
R et e L T N S T

BEBO ERRES JSH =ERROR+ I SET ERROR FLAGS IW R17? AND “ERRORS”

B850 BYT BSD I SYSTEM ERROR MESSAGE #839 "IHVALID PARAMS
N T T e

210 LIHPRS LOM RS5S5,«2,51,371 | LOAD TOKEMH, BPGM#, ANO SYSTEM TOKEN
920 STML RSS, =PTRZ- | STORE THEM ALL OUT TO PARSE STREAM

930 158 =SCAN | SCAM THE IMPUT STREAM FOR MEXT TOKEHN
940 158 =STRREF | TRY T0 GET A STRIMWG VARIAELE REFEREMCE
950 JEZ ERRBY I JIF MOT THERE, ERROR COMOITIOHN

360 LOM RS5,=3,51,371 ! ELSE |LORDO SECOWMD TOwEMH, BPGM#, AND SYS
970 S5TMI RS5,=PTRZ- | STORE THEM OUT TO PARSE OUTFUT STREAM

980 INIT RTH | DOME FOR PARSIMG AWD IMITIALIZIMNG
SED | R R N R A R R R R F AR F A RS E A NP E AR I E X F SRR

1000 1% LIWMPT., iz the runtime code for the first of the two LIMUT tokens.#*
1010 1% It is responsikle fdr the output cof the guestion mark to the CRT =

1020 1% and putting the computer into [dle-in-Input mode, *
(ekinlE Tt bt R T I R T TR e e
1040 BRYT 241 | RTTRIB. ,BRSIC STATEMEMT LEGAL AFTER THLH
1030 LINPT. JSB =INPUT. | OO0 JUESTION MARK AWO SET RiG=4

1060 RTH | DOME, WAIT FOR IMPUT

7-12

Section 7: Bample Binary Programs

TOTD [#F R R R A AR R F FFFEEF A I FF I A A F R A A A F AR R T EF AR T AR R R R RS

1080 I# LIMN%. is the runtime code for the second of the the two LINUT ®
1080 !# tokens. It s responsible for reversing the string in memory so i1%
1100 !#* will be ready for =storing into the string wvarizble; and then doing¥*
1110 1% the actual store (by calling STOST)., The R1Z stack will already *
1120 % hawve been set up for the wariable store by the tokens parsed by *
1130 1% STRREF. ®
R L e P e e T
1150 BYT 44 ATTRIBUTE, MISCELLAMEOUS IGHORE

1180 LINE. BIN I BINM MODE FOR COUMTING

1170 LDOMDO R3Z, <INPTR FETCH AODRESS OF STRING THAT WAS IMPUT
1180 STH-R3Z2,R14 I SAVE A COPRY

11490 CLM R3B FRE-SET LEWGTH TGO ZERD

1200 CHRCNT FOBD R35,+R3Z ! GET THE HMEXT BYTE FROM IMFUT STRING
1240 CMB R33, =15 I IS5 IT A CARRIAGE RETURW CHARACTER?

1220 JZR ENDOF # I JIF ¥YES, WE’WE FOUMID THE EMWDO AWND LENGTH
1230 ICHM R3B ! ELSE INWCREMEMT THE LEMGTH

1240 IMP CHRECMT I AMD LOOP TO CHECK THE MEXT CHRRRCTER
1250 ENDOF 3§ TSM R3IB I IS8 THE LEMGHT ZERO?

1280 JZR DOOME I JIF ¥YES, RETURM A MULL STRIMG

1270 POBD R25, -R3IE | GET BACK TO LAST CHARACTER

1280 POFBLK FOBOD RZ25,-R3Z | FETCH LAST CHARARCTER FROM EMD OF STRING
1230 CMB RZ25, =40 IS IT A BLAMK?

1300 JHE DOME+ | JIF MO, COWTINUE OM

1310 oDCr R3s I ELSE DECREMEWT LENGTH (TRIM HLANES)
1320 INZ: PORBLK PJIF LENGTH MOT ZERO

1330 DONE+ Icr R3Z | MOVE ADDRESS TO OME HIGHER THAM EWO
1340 STM R3IZ,RE3 | SET RODRESS IM RES-RES

1330 CLB RBE? | CLERR MOST SIGHIFICAWT BYTE

1360 DOLOOR CHM Ri4,R32 | FRONWT OF STRIWG HIGHER DR EGUAL TO £HO7
270 ICY DOME I JIF ¥ES

1380 LCBO R3IO,R14 | ELSE GET BYTE FROM FRONT

1330 FOBO R31,-R3Z ! AMD A BYTE FROM THE BARCK

1400 STHD R30,R32 I STORE THE FROWT BYTE IMW HACK

1410 FUBD R31,+R14 i AHD THE BACK BYTE IW FROMT

14240 JMF DOLOOP I LOOP TIL STRINWG IS REVERSED IM PLACE
1430 DOHE PUMD R3E,+RiZ | FUSH THE LENGTH OF STRING TO STHCK

1440 FUMD RES,+R1Z | FUEH THE ARDDRESS OF STRIMWG TO STACK
1430 J5B =STOST | STORE THE STRIWG TO THE WARIABLE RRER
1460 RTH | DOME

147D R R N RN T A F AR R AR A F I P FF AT FE AR F AR R R RS
1480 I= This 15 the runtime code fer the revision date function, which 5%
1480 |#* a string function with no parameters which always returns the same*
1300 |#* string walue, the copyright nottce and the rewvision code. *
1510 | R R R R P R A R R F R PR R A A AR RN AR R RRRF R R IR IR RTINS

7=13

Section 7:

18520
1530
1540
1550
1560
1570
1580
1580
TeQO
1610
1820
1630
1640
1650
TBEEQ
1670
1e80
1E30
1700
1710

Sample Binary Programs

BYT 0,56 ! ATTRIBUTES, STRIMG FUNCTION,NO PRRAMETERS
REW. LOMm Ra43, =44 0 | LOAD LEMGTH OF THE STRING
DEF DATE | AMD THE ADORESS OF THE STREIMG
EYT O ! (IT MEEDS TO BE A THREE BYTE RODRESS)
BIM | BIM MODE FOR ARDORESS MATH
HDOMDO H45, =EIMTREH | MAKE THE ADORESS ABSOLUTE
FUMD R43,+R1E | PUSH THE LENGTH AND ROORESS TO THE STHCE
RTH | DOME
ASC "BZ2.111 .wel 2891 drakcaP-ttelwsH Jci" | THE REVWISION STRIMNG
DATE BSZ O ! MEED LABEL HERE TO GET RIGHT ADORESS
S e T L E
BINTAE ORD 104070 |
ERROR+ bARO 10220
IHPTR DRO 101143
INPUT. DRD tE314 ! LABEL DEFINITIONS
FTRz- DRD 177715 !
SCAN ORD Z111@ |
STOST OAD 4&472
STRREF OAD 2405&
FIM I TERMIMATE HRSSEMBLY

T-14

Section 7: Sample Binary Programs

T

Taking the KYIDLE Hook and Euffering the Keyboard

Source Code: KEYS

Object Code: KEYB

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1158
1180
1-1.7Q
1180
1180
1200
1210
122

1230
1240
1250
1260
1270
1Z2B0D
12890
1300
1310
1320
1330
1340
1350
1360
1370
1380
13840
1400
1410
1420
1430
1440
1450

P L L A I I R S R SRR F F P R F A R R E R R F L F I N F R U R R R R R FH A XX 555

| #
| %
| =
[%
| %
| %
| #
1%
L
LK
r%
I
1%
%
| =
[
| %
| %
| =

TAKING THE “KYIDLE® HOOK AND BUFFERIMG THE KEYEORRD
fer 1961 Hewlett=-Packard Co.

THES BIMARY PROGFAM TAKES OVER THE fKYIDLE® HOOK AMD PUTS ALL
KEYS FRESSED INTO A BUFFER EXCEFT FOR THOSE KEYCODES LISTED IM

THE TRBLE STARTIWG AT *KEYTAE® (RIGHT MOW, THOSE KEYS TO BE LEFT
FOR THE SYSTEM TO HAWDLE ARE THE SOFT KEYS AND THE RESET KEYv. THIG#

L A B O B

COULD ERSILY BE CHANGED BY MODIFYING THE ‘KEYTAE® THBLE!., THE *
BINARY ALSO0 WATCHEES FOR "SHIFT EWD LINE AND *SHIFT UP ARROW" ¥
(WHICH IS5 THE "HOME®™ KEY. (“UFP RRROW" AWDO "HOME® RACTUALLY GEMNERATE*

THE SAME KEYCODDE AMD CAM OMLY BE DIFFEREMTIATED BY CHECKING TO SEE®
IF THE SHIFT KEY IS UF OR DOWM.Y) WHEM "END LIME" OF “UF ARROW" IS5%
FRESSED WITH THE SHIFT KEY DOWH, THE BIWNARY PROGRAM CHAMGES THE *
KEYCOOE TO A DIFFERENT UMIGUE KEYCODE SO THE BRSIC PROGRRM CAN +
TELL THE DIFFEREMCE, THIS, AWND SIMILAR TECHWIGQUES, COULD BE -
APPLIED TO mOST OF THE HEYBORRD. *

*
R N R AR R R R B R R A A F F F FF AR R RS SR P S A R P R R R R F PP R A FF

% -
'# The following 15 8 sample BRASIC program showing how this binary *
I'# program can be used: -
| = *
L% 190 TAKE KEYBOARD -
L% 110 AS=KEYS -
| % 120 IF As«"" THEM 110 -
|- # 130 IF AF="E" THEN Z00 x
| % 140 DISP "THAT WAS THE " & A% & " KEY." -
|# 150 GOTO 110 *
| % 200 RELEASE KEYBOARD *
| % 210 DIsP "DONE" B
| % 220 EMD =
Iy -
T s s T T T T e e
MYBRPGME E0U 50 | BIMARY PROGRAM HUMBER

HAM 50, KEYS I MAME BLOCK FOR BINARY

ODEF RUNTIM ' ADDRESS OF RUNTIME RODRESSES

ODEF MSCIIS ROORESS OF ASCII TARBLE

DEF PARRSE ADORESS OF PRRSE RDDRESSES

DEF ERMSG AOODRESS OF ERROR MESSRGES

BEF IMIT ! RDORESS OF INITIALIZATION ROUTIHE
RUNTIM BsZ 2 ! PLACE HOLDER

DEF TRKE, | RUMTIME FOR “THKE KEYBOARRD®

DEF RELERS. | RUMTIME FOR *RELEASE KEYBORRD’

=13

Section 7: Sample Binary Programs

14E0Q
1470
1480
1490
1500
151¢
1520
1530
1540
1550
1560
1570
1580
1550
1E00
1E10
1620
1830
1840
1650
1660
1670
IEBD
TE90
1700
1710
1720
1730
1740
1750
1760
1770
1780
1780
1800
1810
1820
1830
1840
1850
1BBO
1870
18RO
18890
15900
1910
1920
1930
1340
1950

7-16

DEF: KEYS: | RUWTIME FOR “KEYS®
DEF REWDATE. | RUHTIME FOR FREWISION
FHARSE BsZ 2 | FLACE HOLDER
DEF COMPARS | PARSE ROUTIME FOR “TAKE KEYROARD”
DEF COMPARRS | PRRSE ROUTIME FOR "RILERSE KEYBOARD”
ByT 397,347 | EMD OF RELOCATHBLES
| R R R FFFFFEFEEEEE R+ E L R AT S R FFF AR R L EE RS F AL AN LTI IF I AAF TR EET
RSCIIS BSZ O

ASP ' TAKE KE'YBOARD" | TOKEN
ASP "RELERSE KEYBOARD" | TOKEN
ASP "KEY$" | TOKEM
RSP "REV DRTE" TOKEN

B Gl Pl ==

ERMSG BYT 377 EMD OF RSCIL THRBLE
| R R F R R R R RS SRR R FF IR R AT A HEFEFE I ARG A C R AT

ta
%
| %
| #
| %
| =
| %
| %
| &
k3
| #
(&
"%
|
I %
| %
| %
| %
I'#
| %
| &
| %
| %

BECRUSE THIS PROCRAM TAKES OYER "®YIDLE’, SOME SPECIAL TRICKS
ARE MEEDED. "KY¥IDOLE® 1S AN IMTERRUPT HOOK WHICH MEAMS THRT THE
BASE ADDRESS OF THIS EIMARY FROGRAM MAY MOT BE IN “EINTAB'. A
METHOD IS MEEDED FOR THE HOOK ROUTIME C(-USEKEY® IN THIS CASE] TO
KHMOW WART THE BASE ARDDRESS IS. SIMCE THE *KYIOLE* HOOK IS 7 BYTES
LONG AMD IT OMLY TAKES 4 BYTES TO DO *JSE =USEKEY" & “RTHf, 3
BYTES ARE LEFT UWUSED ¢AMD THAT WE CAW BE SURE MO OME ELSE 15
GOING TO USE, AS LONG AS THIS BIWARY HAS THE MOOK, WHICH IS AS
LOMG AS IT MATTERS!), TWO OF THESE BYTES ARE USED TO STORE THE
BEASE RODRESS OF THIS BIMARY PROGRAM. KESYVE MAMED THE LOCRTION
MYBETRB AMWD DEFIMED ITS ROORESS AS 4 HIGHER THAWM THRT OF “KYIDLE”
(103703 AMD 1036877 RESPECTIVELY. !

THE "IMIT® ROUTIME DODESH'T HAYE TO DO ANYTHING IM THIS PROGRAM
SINCE “LOAD" AND “SCREATCH® CAW'T BE PERFORMED WHILE THE BIMARY
HAS THE HOOK, AND DURING A *RESET® THE SYSTEM WILL HRYE ALREADY
PUT *RTM s BACK INMTO fKYIDLE". WE OHLY TAKE THE HOOX WHEM A
‘TRKE ®EYBOARD® COMMAMD IS EXECUTED, SO0 THERE'S HWOTHING FOR IMIT
TO DO.

THE BASIC FPROGRAM WRITER HEEDS TO BE YERY LCAREFUL, HOWEWER,
USING THIS BIMARY, BECAUSE IF HE MWERE TO EXECUTE A “STOP” OR “END'*
COMMAND WHILE THE HOOK IS TAKEW, THE KEYBORRD WILL EFFECTIVELY BE #*
LOCKED UP EMCEPT FOR THE "RESET” HEY ANWO, THUZ, “RESET” WOULD THEM#
HE THE USERS OHMLY RECOURSE . *

EORE T T N T U N A S T T S

| R F R F I S T A PR AR R R AN A A F R R F R RN FF R R AR FFFFFF S HH T R T R R F R HH
INIT ETH ! ALL DOHE
| # XX EF EF L AL L LA EE A A FF F E E A A IR F T A A FEF T I EIEEE RS SRR R AT T TR LETAST

| ®
| %
| ®
¥

NEITHER “TAKE KEYBOARD® OR “RELEASE KEYBOARO™ HAVE AMY PARAMETERS =
SO0 THEY BOTH USE THE SAME PBRSE ROUTIME, WHICH SIMPLY PUSHES OUT =
THE THREE BYTE SEQUENMCE FOR THE KEYWORD AMD THEW DOES A “SCHM® FOR=
THE SYSTEM, SO0 THRT R14 WILL HAVE THE HWEXT TOKEM WHEM WE RETURM, #

L T T T R T P R R TR T
cgmPARs LDOM RSE, =50,371 | BPGM # AND SYSTEM TOKEM

LOB R55,R43 | GET THE BIMARY FROGRAM TOKER &
STMI RSS,=PTRZ- | STORE IT ALL OUT TO PARSE STACK
J58: -SCHN | DO A SCAWM FOR THE SYSTEM

RTH

Section 7: Sample Binary Programs

18E0
1870
1380
1880
2000
2010
2020
2030
2040
2050
200
2070
2080
2090
2100
2110
2120
2130
£142
2150
2180
£170
£1B0
2180
2200
2210
Z£220
2230
2240
2250
2280
227D
2280
2290
Z300
2310
2320
2330
2340
2350
Z23B0
2370
2380
2390
2400
2410
2420
2430
2440
2450
2480
2470
£480

R s L e L e s P T P
I%# “REY DATE" IS5 A STRIMNG FUNCTIOM WITH WO PARAMETERS WHICH RETURMES =
F# RS ITS STRIMG WALUE THE COPYRIGHT STATEMEMT AMD REVISIOW COOE OF =

i®= THE BINARY PROGRAM. y *
R R N R R R R RN R R AR R R AR R RN R R R RN R R
EYT 0,586 ! HO PARAMETERS, STRING FUNCTIOM

REVDATE. EIM
LOM R43,=-40D0,0
DEF DATE

! FOR ADMD R45,=BINTRB

|
BYT O !

|

LORD THE LENGTH OF THE STRIMNG
AMD THE ADDRESS OF THE STRIMG
(MUST BE THREE BYTE ADORESS
MAKE THE SODRESS ARBSOLUTE
PUSH IT ALL OW THE OPERATIMNG STACK

AOMD R4S, =BINTAB
PUMD R43,+R12

RTH | DOME
ASC “31.,102 weR ,oC drakcaP-tte|wsH 2831 1c("
DRTE BSZ © | PLACE HOLOER FOR THE LABEL (AOORESS)

E e d bRttt b s LT bt b e o o e
|#% THIS IS5 THE TABLE OF KEYS THRT THE BIMRRY PROGRAM SHOULD LET THE
I# SYSTEM HANODLE, AND IT SHOULD HWOT PUT THEM IM THE BUFFER, THE TRELE®
I# I8 TERMIMATED BY A 377, WHICH IS A KEYCODE THE KEYBOARD COMTROLLER:

l# IC IS5 IMCAPABLE OF GEMERATIMG, %
R R A R R R R R v A W R L S s P S S R S F F F FFF F A B BN B R RS
KEYTHB EYT 200 [

EYT 201 | K2

BYT 202 | =3

ByT 203 | =4

BYT 241 | K5

BYT Z42 | KB

BYT 234 | E?

BYT 204 | K8

BYT 205 | K3

BYT Z0B | K10

8yT 207 | KA1

BYT Za5 | E1Z

BYT 254 | K13

ByT 223 | K14

8YT 213 | RESET

BYT 377 | END OF IMVYALID KEY THBLE

R Y e T T Y
L% THIZ IS5 THE RUMTIME ROUTIME FOR THE “TAKE KEYBORRD® KEYWOROD, 1T
I# INMITIRLIZES POIWNTERS TO THE BEGIMMWIMG AMD EMDO OF THE =EYEORRD

|# BUFFER, WHICH EXISTS FARTHER DOWH IM THE EBIMARY PROGRAM, TAKES

l# OVER THE "KYIDLE® HOOK, AWMD IMVALIDATES THE KEY REFEART FLAG. IF
I# THE KEY REPEAT FLAG IS VRLID, THE LAST KE¥ IS TAKEW FROM THE

l#= BUFFER (USING THE “KEY$® FUNCTIOMNI, AMD A KEY IS STILL DEPFESSED
I# THE LAST KEY WILL BE PUT BACK IW THE BUFFER S THAT IT WILL REBERT=

oW K K W

|# AS LOKWG RS THE KEY IS HELI DON. *

|*******i*****i!******+**********i¥}b***********&**********{i**%4****+
BYT 241

THEE . LomD Rqﬁ,'EINTHH FOR RELATIWE RADDRESSING

|
LOM R3O0, =KEYBUF | GET HODRESS OF KEYBORRD BUFFER
ADM R3O0, R4B ' MAKE IT ABSOLUTE

STMD R3O0, X4E,KEYPTR | IMITIMLIZE KEY POIMTER

ROM R3O0, =800,0 ! POINT TO END OF BUFFER

Section 7: Sample Binary Programs

2430 STMD R3O0, ¥48 , KEYEND | IMITIALIZE KEYEND

2500 LOM R30, =USEKEY | ADDRESS OF KEYBORRD SERWICE ROUTIME
2510 ADM R30,R46 | MAKE IT RBSOLUTE

2520 5TM R30,R43 | CORY TO 43&4d

2530 LOB R45,=23E | 45« "RHTN"

25410 LOB R42,=316 | 42=*3J5B"

253 TRKEIT STMD R#, =KYIDLE | STORE DUT RTH"S 0OR J1SB=USEXEY ,RTH,BIKTAHEB
25e0 LUB RH, =377 | INVALID REPERT FLAG

2370 STHD A, X46, LASTKEY ! SET IT

2580 RTH

D | S R R R R R AR RN R AR AT TR IR LI EFERERE
2600 |#% THIS 1S THE RUNTIME ROUTIHME FOR THE *RELEASE KEYBORRD® KEYWIRD. *
Z610 I# ALL IT DOES IS PLACE RETURKWS BACK IMNTO THE “K¥IDLE* HOOK, THUS, *
ZEZ0 |* GIVING UP CONTROL OF THE KEYBOARD. *

ZEIJD | R R RS AR R R TR AR A TR ARSI P I FFAIF I T AT EH
2640 BYT 241

2650 RELEAS. LDMD R4&,=BINTAB | GET BPGM’S ERSE RODRESS
2BEQ LOM R52,=236,236,236,236,236,236 ! LOTS OF RTHS
2670 JMP TRKELT | GO STORE TO HOOK

ZEBLD @ EE st R R R R R R R R R R R R SRR RSN AT AR R AT FERFEIA R TR SF
2630 ‘% "USEKEY" 15 AN INTERRUPT SERVICE ROUTIME S0 IT MUST BE CAREFUL TO=
2700 1% SAYE ALL CPU STATWS AND COMTEWTS AMD THEW RESTORE THEM WHEM DOME. =
2710 |* THE SYSTEM HAS ALREARDY TOME R "SAD" BEFORE IT DID THE *J5B" TO
Z720 |¥% "KYIDLE*, THE ROUTINE CHECKS -TO SEE IF THE BUFFER 15 FULL AND IF
Z273A0 1+ S0 THROWS THE CURRENT KEYHIT BHAY. IT THEW CHMECKS FOR THE SHIFTED
Z740 |#® “UP ARROW® OR “END LIMNE" KE¥S AMD IF S0 MODIFIES THE KEYCOD TO
2750 |% MATCH, IT THEW CHECKS THE "KEYTAB’ TABLE TO SEE IF THIS KEY SHOULD
2760 |* BE IGHORED, IF IT IS IM THE TRELE, THE ROUTIWE JUST CLEAWS UP A
2770 %= LITTLE AMOD RETURWS BACK IWTO THE SYSTEM KEY HWAMDLIMG ROUTIME.

Z7H0 |# OTHERWISE, IT PUTS THE MEW KEYCODE IM THE BUFFER BMD UPDRATES THE
2790 |* BUFFER POIMTER, IT THEW FIGURES OUT WHAT THE ORP SHOULD BE WHEHM
ZHOD |#* IT RETURNS FROM THE INTERRUPT SERWICE, AMD PLACES A DRP COMMAMD
2810 |% WHERE IT WILL BE EXECUTED JUST BEFORE RETURMINWG (THIS IS5 50 THE
ZBZ0 |# EXTEMDED MEMORY COMNTROLLER CAN KEEFP TRACK OF THE DRP FOR MULTI-
2830 |* BYTE COPERRATIOMS.) IT THEM RESTURES REGISTERS, THROWS RWRY TWO

2840 !¥» RETURW ADDRESSES, FAND RETURME TO WHRTEYER WAS HAPPEMIMG BEFORE
2830 I* THE KEYHORRD IWTERRUPTED,

Z2BED0 | EEEXERFXFEFFEFFE I IR A EE IR ZE R AL Z AR E R EERFREFEEX AN F A XU XX ETEFT XTI EFFTEAEEET T

OO ok M Wk R K KKK KK

o

2870 USEKEY STHD R4, =GINTDS { DISABLE GLOBAL IHTERRUFTS
2BBO BIM ! FOR EVERYTHIMG

2830 FUMDO RZ, +RE SAYE 243

£300 PUMD R40, +RE | SAYE THE 4075

2310 LOM R40,RZ0 | AND THE 2075

2920 LOMDO REZE, =MYHTHH | FOR RELATIVE ANYTHING
2330 LOMD RZ0, XZE, KEYPTR I GET THE KEY POINTER
2940 LOMD RZZ2, X268, KEYERND | AOORESS OF ENWD OF BUFFER
2350 CiM R22,RZ0 | BUFFER FULL?

28E0 JZr RE-START [JIF-IT IS

2970 LOBD RZZ, =KEYCOD | GET THE:KEY COBE

2380 LOBO R25, =KEYSTS | GET KEYBORRDO STRATUS

2330 AMM RZ5, =10 | MBSK FOR SHIFT KEY

000 JER HOTSHIFT | JIF SHIFT KEY HNOT DObM
EReR Y CMB RZZ, =kUPCUR | UP CURSOR KEY?

J020 JMZ EWMDLIMNE? | JIF: MOTF

1030 LOB RZZ, =kHOME | OTHERWISE MAKE IT THE HOME KEY
040 JMP NOTSHIFT | FALL THROUGH

030 EWMDLIME? CMB REZEZ, =kEWILINE | WAS IT THE EMDLIME KEY?
3060 INZ WOTSHIFT I JIF NOT

3070 LOB RZZ,=<kSEMILIN ! MAKE 1T SHIFT EWDLINE
3080 NOTSHIFT LDOM R24, =KEYTHH ! RODRESS OF IMWVALID KEYS
3030 AOM RZ4,RZE ! MAKE 1T ABSOLUTE

3100 KEYLOORP POBD RZ3, +HZS | GET AWM INVALID KEYCODE
A110 CMB RZ3, =377 | EMD OF THBLE?

7-18

Section 7:

3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3ZE60
3270
az280
3zZ9o
33co
33to
3320
3330
3340
3350
I3E0
3370
3380
33%0
3400
3410
3420
3430
3440
3450
34E0
3470
3480
3450
3500
310
3520
3530
3540
3550
3ISED
3IST70
3580
3540
IE00
IE10
3620
3630
3640

KEYLOOR

RE-START

KEYRTH

DRP

KEYRTH+

FIXUP-RB

J1Zr
ime
JHZ

KEYLOOPY
REI,REZ
KEYLDOF

ISB %Z6,FIXUP-RE
JHP KEYRTH+

PUBD R2Z,+RZ0
STHMD R20, %26, KEYPTR
CLE RZO

ICE RZ0

S5T80 RZ0Q,=KEYLCOD
JSB KZE,FIXUP-RE
SHM RE, =4,0

STHD RE,=GINTEN
BSZ 1

FHD

RTH

STHD R#, »GINTEN
RTH

STHMI =30, =MYETAE
POMD R30,-RE

LOM RZ2O,RE

SHM RZ0, =20,
LDED R20,R20

ANM RZO,=77,0
ROB RZ0, =100
STED R20, %26, DRP
STH R40,R20

POMD R4C, -RE
FOMD RZ, -Fb

FUMD R332, +R6
LDMI R3O, =MYBTAB
RTH

Sample Binary Programs

JIF IT IS

1S THIS KEY INVALID
JIF HO MATCH

FIx UP THE RE STRACK
FALL THREOUGH,
AFFEMND TO THE HUFFER
UPORTE THE POIMTER

Y

» EEBTART THE KEYBORRD SCRHREMER

FI< UP THE RE STHCK
TRASH TwWd RETURMS

RE-EMABLE GLOBAL INTERRUFTS

FORCE THE DRP
FESTORE THE STATUS
ALL DOME

RE-EHABLE IMTERRUPTS

SAYE 30

EET THE RETURM RDDRESS

COPY OF RB

GET DOWW TO MIDODLE OF THE SHO

FETCH THE DRF BYTE

MRSk OUT THE LRST DRF

MAKE 1T INTO A ORP IHNSTRUUCTIOHN
STORE: I'T OUT

RESTORE THE 2037

RESTORE THE 40%5

RESTORE 283

FUT THE RETURM BACK
GET 30 BRCK

ALL TOOHE

LET THE ‘S¥STEM -HAVE

IT

I B2 R R R R T A AR R LB R B R A A A A I I L TR E T R EE R F R FFFEFFFFFFFFFFFFATTFEER RS

1% 3
|
| ®
| %
| %
&
1%

THIS
STRIMG
LENGTH
KEY IM
A MULL

BUFFER

15 THE

RUNTIME ROUTINE FOR THE

PREYEE

KEYWORD,

i P

=

FUMCTION WITH WO FRRAMETERS WHICH RETURMS A STRIMG: WITH A

oF
THE ®EYBOARD BUFFER.
STRIMG (LEMGTH=D].

POIMTER.

ONE WHOSE SOLE CHARACTER IS

IF

IT COLLAPSES ALL THE OTHER KEYCODES IM

THE BUFFER WRAS EMPTY,

THE KEYCODE OF THE FIRST

IT RETURNS

WHEHW IT TRKES R KEY OUT OF THE BUFFER,

THE BUFFER AMIO RAOIUSTS THE

L = A S N

(AR E R LB E L L LI IR LI AT L L L EE L L L L L LA LA XA R E LR L E LT R EF I FF R E R TR FEREEEEF

KEY'S,

BYT 0,56

BIN

STBD R&#,=GINTOS
LOMD R14,=BIMTHE
LOM RZ0, =KEYBUF

ROM RZO,R14

LOMD R22,X%14,KEYPTR
CrmM REE , R0

JZR KEY%$3

LOM R3O0, RZD

FOBD R3Z,+RZ0

STBD R32,X14,LASTKEY

FOR EVERYTHIMG

DISHRELE GLOBHL IMTERRUPTS

FOR AMYTHING RELATIVE

ADDRESS OF KEYBOARRD BUFFER

MAXE AODORESS ARESOLUTE

GET POIWTER IMTO BUFFER

BUFFER EMPTY?
IER: I IS
COFPY 20

GET A KEY
SAVE LAST

KEY FOFE POSSIBLE R

7-19

Section 7: Sample Binary Programs

JES0D
JIEED
670
JEBO
B30
JTao
3710
3720
3730
a7&0
IT50
I7e0O
3770
3780
I730
3800
3810
3BZ0
3830
3842
3850
3BE0O
IB70
Jgao
3890
3800
Ig10
J9z0
3830
3340
3950
3380
3870
3980
3880
4000
4010
4020
4030
4040
4050
4080
4070
4080
4030
4100
4110
412G
4130
4140

KEY%$1

KEYS$E
KEY$2+

KEY$2++

KEY$&3

FEY$4

CHMM RZZ,RZ0

JZR KEYS$Z

POBHD RK33,+RZ0

PUBD R33,+R30

JMP KEY#$1

ODCH R22

STMD R2Z,%14,KEYFTR
CLM RZZ

ICHM R22

FUMD Ra,+R12

LOM RS55, =LASTHKEY
BYT 0

BOMD RS5,=BIMTRB
ICM RSS

FLMD. RS5, +R12

STHOD R#, ~GINTEM

RTH

LOBD R3Z,*14,LASTKEY
CHMB R3IZ2, =377

JZR KEY$4

LOBD R3IZ,=HKEYSTS
LRE R3Z

JOD KEYSsZ+

LOE R3Z, =377

STBD R3zZ,x14,LASTKEY
LM R3Z

NP KEY$Z2++

BUFFER COLLRPSED 5,
JIF IT 15
GET A KEY
MOVE 1T DOWM
Loor
AOJUST KEYFRTR
AND RESTORE IT
by

» LEMGTH OF 1%

ol
ADDORESS OF KEYHIT
----» RS7
MAKE RODRESS ABSOLUTE
FOINT TO RFTER THE KEY
FUSH ADDRESS QUT
RE-EMRELE GLOBRAL INTERRUPTS
ALL DOME
CHECK LAST KEY
IMVALID REPERTY
J1F S0
GET KEYHORRDO STRTUS
SHIFT STILL OOWW FLAG
LET*S REPERT IT
INVALID REPERT FLAG
SET IMVALLIO REPERT
MO REPEAT, S0 O LENGTH
OME MORE TIME

Rttt bt E s R

LRSTKEY
KETBUF
KEYRTR
KEYEHD
kUPCLR
kHOME
KEMDOLIMNE
KSEMDLIN

BH5Z 1
BEZ BoOD
BEZ 2
BSZ 2
EQU 243
EQU 23D
EGL 237
EQU ZE7

FOR HEY REPERTIHG PURPOSES
ALLOW UFP 7O 8¢ KEY STROKES: IN BUFFER

FOINTER TO IMPUT POIMT IN BUFFER
FOINTER 7O END OF THE BUFFER
UP CURSOR KEYCODE ==y

HEK HOME KETCODE
EMDLIWE KEYCODE
MEW SHIFT ENO LIME KEYCODE

it b it i bR IR S E R e s e e e s R e RS T

ERROR+
FTRZ-

SCAMN

BEINTRH
PTRZ

ROMFL
kI DLE
GINTDOS
GIMNTEM
MYBETRE
KEYCOD
KEYSTS

T-28

DAOD 10220

080 177715
ORD 21110
ORD 124070
ORD 177714
ORD 124065
OAD 103677
ORD 177401
DAD 177400
0RO 103703
ORD 177403
ODRD 177402
FIM

DEFINE SYSTEM RADDRESSES

TERMINRTE. RZSEMBLY

S

Section 7: Sample Binary Programs

7.6

GET and SAVE
Source Code: GETSAVES
Object Code: GETSAVEER

1000 | FE5E ¥ i st AR R F R A R AR F R R EF R R X IR IR B AW F AR TR T
1010 !% This kinary program implements the SAVE and GET statements faor x
1020 % turning programs into normal strings tnoa DATA file amd turning ®
1030 1% rormal strings back 'nto lines of a BRASIC program. ®
1040 |% The syntax for the two statements 18! by
1050 | SEYE <file name?[,<beginning line3} i, fending linegk] ¥
OB | * GET <file rname? ®
1070 |% SAVE calculates the svze of the DATA file neaded by listing the =+
1080 [# program and counting the tatal length of the strings [(plus the *
1080 % thre= bytes of hesader por string reguired by the file manager). =
1100 1% It does this by taking over IDTRFC and fercing the select code to %
1110 1# a walue that will caus= the listed strings to go out through the *
1120 % hook., LSSET 1% an eatry point itn the LIST routtne that lists the *
1130 |* entire program. After the size of the data Fi1le 15 known, 1t 1= ®
1140 |* created lany old ore of that name already in existence will be *
1150 |* purged fTirst] and then the program 1% |isted agaln, this tIime wlth*
1160 |% the Vines f{as strings) being printed out to the data file, *
1770 1% GET opens the data file, reads a string, copies the string to ¥
1180 % the ipput huffer IMPBUF, then calls the PRRSER, which will parse *
1190 |'# the Time and edit it fnto the program; |f no errors cccour, I a *
1200 | % parse arror occurs, an exclamation point |1s inserted into the |lnex
1210 1% after the line number and the line s parsed again as & comment. ¥
1220 |# GET has to create & dummy string wvariable area 1n the bipary =
1230 |# program for the strings to be read Into, because RISTR. does = %
1240 1% call +o STOST bafore it returns, and STOST expects all the usual #
1250 1# infermation on the stack and an associated warijable area (in .
12B0 !'# pther words, we hawve to trick the system when we call]l RDSTRE,), *
I et L g
1280 MAM 41, 5AVG | GET UP THE PROGRRAM COWMTROL BLOCK
123940 DEF RUNTIM ! PTR TO THE RUNTIME ADIRESSES

1300 DEF TOkS | PTR TO THE KEYWORDS

1340 DEF PRRSE | PTR TO THE PARSE ADDRESSES

1320 DEF ERMSG | PTR' 7O THE ERROR MESSAGE TRBLE

1330 DEF INIT | PTR TO THE INWNITIALIZATION ROUTINE
1340 RUNTIM BYT 0,0 | DUMMY RUNTIME ADDRESS FOR TOKH O
1350 DEF SHVE. | RUNMTIME RODORESS FOR TOK# 1

1360 DEF REWISOH. | RUNTIME BODRESS FOR TOK# &£

1370 DEF GET. | RUMTIME RDDRESS FOR TOK# 3

1380 PRRSE BYT 0,0 | DUMMY FPARSE RDORESS FOR TOks ©

1390 DOEF SHYPRRES | PARSE RDDRESS FOR TOK# 1

1400 BYT 0,0 ! DUmMMY PARSE ADDRESS FOR TOK# 3

1410 OEF GETPARS ! PARSE AODRESS FOR TOK# 3

1420 ERMSG BYT 377,377 | TERMIMATE RELOCATIONW AMD ERROR THREBLE
1430 INIT RTH PoH0 IMITIALIZATION

1440 TOKS ASP " SAVE" ! KEYWORD 1

1450 ASE: "GET SAVEY KEYWORD 42

1480 AgF "GET" ! KEYWORD =3

1470 BYT 377 | TERMINATE KEYWORDO TABLE

7—21

Section 7:

1480
1430
1500
1510
1520
1530
1540
1550
1580
1570
1580

1530 PRRSCOMN

1800
1E10
1620
1E3D
1640
1650
1660
1670
1EBD
1630
1730
1710
1720
1730
1740
1750
17B0
1770
1780
1790
1800
1810
1820
1B30
1840
18350
TBEBO
1870
1BBO
1H90
1300
189190
15920
1830
1940
1850
1860
1870
1980
1990
2000
2010
2020
2030
2040
2050
ZOBEO
2070

7-22

Sample Binary Programs

EEs s s i s s s L s e T

SAVPARS

ERR

oK1

PUBD R43,+RE
JEB =5TREX+
JEN BK1

POBD R43, -RE
JSB =ERROR+

BYT 880

CrE R4, =54

INZ PARSCOMM
JSB =GO1EN

LDBI RSB, »PTRZ+*
LOM RS6,=41;3M
POBD RSS, -RS
STMI R55,=FPTRZ-
RTH

SAVE CURRENT TOKEM

GET THE FILE NAME

JIF IT WAS THERE

ELSE CLEAMN UP STRCK
REFORT THE ERROR

BAOD STRTEMEMWT

COMMA?

IJIF WO LIMWE HNUMBERS

ELSE GET ONE OR THO LINE
CLEAW UP PHRSE STREAM
HPGM# AMD SYSTEM TOKEM
FECOVER BPGM TOKEM #
STORE THEM OUT TO THE PRRSE STREAM
OOHE

HUMBERS

([EEEEE A A ERRA AR EEE T I XTI R E L EEE R AR EE LR RE R EEEEEERRE T EEE R R LR R EREETEF

GETPRRS

FUBD R43,+tRE
JSB =STREX+
JEZ ERR

JMF PARSCOMM

SAVE THE. IHCOMING TOKEN
GET THE FILE MWAME

J1F HOT THERE

ELSE FINISH UP

| EE LR R R A A A E R E N F E EE L E E R FE T AL E R R IR R R R R A R T F A FFF R R EFFFFFF R0 bR

SHVE ,

STOLINY
Do-17

EYT 241
ISE =CLERR.

LDMD R1D, =BIMTRE

LDM R2E, =SAVING

ADM R26,R10

LDM R3B, =20,0

JSB =0UTSTR

LOMD R41,-I0TRFC

STMD R41,%10,5AVIOTFC
LOMD R40, =SCTEMP

STHMD R40,%10,SAVSCTEM
LDM R?2,=231,23%,11,0,0
STMD R72,*LLDCOM

LOM RZO,R12

SEM RZ0,=5,0

CMMD RZO,=TOS

JZR DO-IT

JSB =OMEI

LOM R20O,R1Z

SEM RZ0,=5,0

CMMD RZO, =TOS

JZR STOLINY

STMD R45, =LLDCOM

ISB =OMEI

STMD R45, =FLOCOM

POMD R43,-R1Z

STMD R43, %10, FILENAME
CLM RS0

LDB RS7,=10C

FUMD RSO, +R1Z

PUMD R43,+R12

BUMD R10,+RE

JSB =ROMISB

DEF RSSIG.

WAL MSROMH

POMD R10, -RB

CME R17, =300

JNC ITSTHERE

LDBD R0, =ERRORS

! I:J

BASIC STATEMENT, LEGAL AFTE® THEW
CLEAR THE CRT
GET OUR BASE ADDRESS
GET THE RELATIVE RDDRESS OF
MAKE IT RBSOLUTE
LORD THE LENGTH OF
OUTPUT THE MSG
SAVE THE REAL HOOK
STORE IT AWAY
SAVE THE REAL SELECT CODE
STORE IT AKWAY

| LDAD DEFAULT LIST PARAMETERS
SET THEM
COPY STRCK POIMTER
TAKE OFF STRIMNG STUFF
ANYTHING ELSE THERE?
JIF WO, USE DEFAULTS
ELSE GET ONE MNUMBER OFF
COPY STACK POINTER
ADJUST FOR STRIMNG STUFF
ANY MORE?
JIF WO
ELSE SET LAST LIME
GET THE FIRST LINE
SET THE FIRST LINE
GET THE STRING
SAVE IT AWAY
SET UP FOR A FLOATING POINT |
THAT FINISHES IT
PUSH TO STACK FOR ARSSIGNS 1
PUSH FILE WAME BACK
SAVE OUR BASE ADDRESS
SELECT THE MSTORAGE ROM
ASSIGN BUFFER & 1 TO FILE
ROM TO SELECT
RECOVER OURE BRSE
AMY ERRORS?
JIF MD, IT WAS THERE RND DRTA FILE
GET RERSON

MSG
THE HM5G

CONTENTS

DECOMRILE

DECOMPILE

T

Section 7: Sample Binary Programs

2080
2090
2100
2110
2120
2130
2140
21580
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
£270
2280
2290
2300
2310
2320
2330
2340
2350
2380
2370
2380
2330
2400
2410
2420
2430
2440
2450
2460
2470
Z480
2480
2500
23510
2520
2530
2540
2350
2560
2570
2580
2530
200
2610
2620
2630
ZB40
2B50
ZBEO

ITSTHERE

CALCRTH

CREATIT

MOIHC

CMB R20,=870

JZR CRERTIT

GTO RESTORE

FUMD R10,+RE
STHOD R1Z,=T05
LOMO R?P3, %10, FILENAME
FUMD R?P3,+R1Z
JSB =ROMISE

DEF mMSPUR.

YRL MSRIMA

FOMO R10, -RE

IMP CREATIT

FOMO R10, -RE

GTO RESTORE

PUMD R10,+RE

AMM R17, =77

CLB RZO

STHD REZ0, =ERRORS
LOM R3IG, =COUNT
ROM R3IE,R10

STM R3IB,R43

LOB R47¢, =236

LOH F44,=31E
STMD R4q,=I0TRFC
LOMD R7YZ,=LLDCOM
FUMD m7Z,+RE

CLM R7O

STMD RFO,=SCTEMP
STMD R?S, =MxTOAT
PUBD R1&6,+RE

LDE R1B, =2

JSB =LSSET

FOBD R1EB, ~RB
FOMO R72,-RE
STMO R?P2, «LLDCOM
CLE RSO

LOMD- R45, =MN2TOAT
JZR: CRLCRTH

AODM R4%,R46

ALM 45,496

ROM R45,R4B

ADM R45,=3,0,0
TSEB R45

JZR WOIMNC

ICM R4B

LOM E35,R4E

JSH =CONBIZ

Pomb R10,-RE
PUMD R10, +RE
LOMO RS3, %10, FILENAME
BUMO R53,+R1Z
PUMD R4Q,+R12
LEM R54,=377,56C,2C,0
FUMD RS0, +R1Z
JSE =ROMISH

OEF MSCRE.

VHL MSROME

POMD R1Q, -RE

CHMB R17, =300

FILE NAME ERROR?
JIF IT WASN’T THERE
ELSE BAIL OUT

SAVE OUR BRSE

MAKE SURE STRCK LOOXS GOCD

GET THE FILE HRAME BRCK
PUSH IT TO THE STACK
SELECT THE ROM

PURGE THE FILE

ROM TO SELECT

RECOVER OUR BRASE RODRESS

COMTINUE
RECOVER BASE

SAVE OUR BRSE

CLEAM UP'THE EREOR FLAG

AHD THE OTHER OHE

ouT IW RAM

QET THE REL RDDRESS OF

MAKE IT RAB=OLUTE

SET IT

LORD A RTW OFCODE

LOAD A JSB OPCODE

TRAKE THE HOGK

SAVE LIST POINTERS
OM THE RTH STRCK

ZERD THE SELECT CODE

SET THE SELECT CODE

INITIALIZE BYTE COUNT TO

SAVE CSTAT

FAKE RUMW MODE
LIST THE PROGRRM
RESTORE CETAT

RESTORE THE LIST POINTERS
RESET FIRST#LAST LIME PRIMTERS
FOR THE MULTI-BYTE RDDS

GET THE BYTE COUMWT
JIF MOTHING THERE

WE MEED TO ADD THREE BYTES FOR ERCH

RECORD BECRUSE OF THE HEROER USED EARCH
TIME A STRIMWG CROSSES RECORD B0uMORRY

AN EXTRA THREE

IS IT ZERD?

JIF ¥ES

ELSE ROUND IT UP
SET IT FOR COMNBI3

COMVERT IT TO FLORTING-FOINT

RECOVER DUR BARSE
SAYE IT RAGRIM

GET THE FILE HWAME
PUSH IT TO STHCK

PUSH THE NUMBER OF RECORDS DESIRED

MRAKE 256 BYTE RECORDS
PUSH IT TO THE STHCK
SELECT THE ROM

CRERTE THE FILE

ROM &

RECOVER DUR BARSE

ANY ERRORS OM THE CRERTE?

F=d3

Section 71

2ZETO
£880
2690
2700
27140
2720
2730
2740
2750
2760
2770
2780
2730
2800
281G
2820
2830
2840
285D
ZBE0
2870
2880
2850
2500
2810
£920
£330
2340
2850
2860
23970
2980
2590
000
3010
3020
3030
3040
3050
J0E0
070
Joao
3angao
3100
1o
3120
3130
3140
3150
3160
31710
3180
3130
3200
3210
3220
230
3240

SHVEX
ASHPRT

ASMRTH
FRIWT

RESTORE

FIMMEG

MESAGE

JCY SRAVEX
PUMD R10, +RE
ISB %10, ASNPRT
POMD R10, -RE
CMB R17, =300
INC PRIMT

GTO RESTORE
STMD R12,=TOS
CLM RSO

LDE RS57,#10C
PUMD RS0, +R1Z

LDMD R53, %10, FILEMAME

PUMD RS53,+R12Z
ISE =ROMJSH
DEF RSSIG,
WAL MSREOM#
CMB R17,=300
JCY RASHRTH
CLM R40

LOB R47,=10C
FUMD R40,+R1Z
JSB =ROMISE
DEF MSPRHT
WAL MSROM=
RTH

LDOM R36, =SAYERECS
AOM R3E,RI1OQ
STM R3IE,R45
LOE R&7, =236
LDB R44,=31E6
STMD R44,=I0TRFC
FUBD R1E,+RE
LOBE RiG,=2
PUMO R10O,+RE
JSB =LSSET
CLM R3B

POMD R10,-RE
FUMD R10,+RE
JSB ®10,S5AVERECS
JSB =ROMJISH
0EF FREDL.,
VAL MSROMs
POMD R1C, -RE
FOBD R1E, -RE
JSB ®i10,CLOSE

LOMO R71,¥10,5AVIOTFC

STMD R71,=I0TRFC

LDMD R70, %10, SAVSCTEM

STHMD R70, =SCTEMP
JEB =CLERRK.

LOM R2E,=MESAGE
AOM RZ6,R10

LDM R36,=4,0

JSB =0UTSTR

RTH

ASC " DONE"

Sample Binary Programs

JIF YES

SAVE OUR BRSE

ASSIGH THE BUFFER AMO 00 THE MSPRMNT
RECOVER OUR BRSE

AMY ERFORS IN THE ASSIGH?

JIF HNO

EAIL OUT

MAKE SURE STACK LOOKSE GOOD

FIX UPF FOR REAL 1

FUSH IT TO THE STHCE
GET THE FILE HMRME
PUSH IT TO THE STHCK
SELECT THE ROM
ASSIGH THE BUFFER
ROM&
AMY ERRORS?
JIF YES, DO NO MORE
ELSE MRKE R 1
(FLOARTING POINT 113
FUSH IT TO THE STRCK
CELECT THE ROM
00 THE RERD#H
ROM #
OOHE
GET THE REL ARDDRESS OF CUR ROUTIME
MAKE IT ABSOLUTE
SET IT
LOAD A RTH OPCODE
LORD A JSB ORPCODE
THAKE THE HOODK
SAYE CSTAT
FHKE RUW MODE
SAVE OUR BRSE
LIST AWD PRIMTH IT7T
LIME LEN OF ©
RECOVER OUR ERSE
SAVE IT AGRIN
PRIWT B MULL STRIMG AT THEZ
SELECT THE ROM
OO THE EMD OF LIME PRIMTIMNG
FOM #
RECOVER OUR BRSE
RESTORE CSTAT
CLOSE: THE: FILE
GET THE OLDO HOOK
RESTORE IT
GET THE QLD SELECT cODE
RESTORE IT
CLEAR THE CRT
LOAD THE RODRESS OF
MAKE IT ABSOLUTE
LOAD THE LEH
QUTPUT THE STRIMG
DOME

EMD

THE. M&a

| EFEEFELEEEEE A EEEEETFFEZRIEEEIEII IR R EREEEEEERREEEE T ENAEE R R RS R TR R RN

CLOSE

CLM R4C

HEED AWOTHER 1

Section 7: Sample Binary Programs

3250
3280
3270
d280
4230
3300
3310
3320
3330
3340
3350
33E0
3370
3380
3380
3400
3410
3420
3430
3440
3450
3460
3470
J4B0
3450
3500
3510
3520
3539
3540
3550
3560
A570
1580
a590
AB00
3610
IBZ0
3630
IE40
3650
36E0
3670
IE80
3530
3700
avi0
J120
3730
3740
3750
I7ED
3I7V0
a7B0
avsn
3800
Jga
3BZ0

LOB R47, =10C
FUMD R40,+R1Z
LDM R4B, =1,0
FUMD R46,+R1Z
LOM R45, =STAR
EYT O

ADM R45,R10
CLE R47

FUMD R45,+R1Z
FUMD R10,+RE
JSE =ROMISE
DEF RASSIG,
WAL MSROMH
FOMD R10, -RE
RTH

FINISH THE 1

FUSH 7O STRCK

LENGTH OF THE "#®" STRIMNG
FUSH IT TO STACK

ADDRESS OF THE RSTERISK
HEED A THREE BYTE RIODRESS
MAKE 1T RBSOLUTE

CLEAM UP THE MZ BYTE
PUSH THE RADDRESS

SAVE OUR BRSE

SELECT THE ROM

CLOSE THE BUFFER

ROME TO SELECT

HRECOWER THE BRSE

DOME

Rttt bl s s e R R R R Y R e

COUNT

BEIN
CLB R40
AOM R3E,=4,0

LOMD R4S, =NXTDAT

AOM R45,R3E6

STMD R4S, =HLTORT

RTH

FOR THE MATH

FOR THE MULTI-B¥TE ADD
ROD SOME FOR THE HERDER
GET THE FREVIDUS COUMT
ADD THE CURRENT LIME LEH
SAVE THE MEW COUMT

OONE

R L L 3
SAVERECS PULMD R3E,+R1Z

SAVLOOP

PRINMT-IT

STH RZE,RZ4
RDM RZE,R36
STM R25,R45
CLE R47

PUMD R45,+R1Z
CMM RZ4,RZE
ICY PRINT-IT
POBD R30,-RZE
LOBD R31,R24
STBD R31,R26
PUBD R30,+RZ4
IMF SAVLOOF
JSB =ROMISH
DEF PRSTR.
WAL MSROM#
RTN

FUSH THE LEMWM OF THE LIHME
COFY OF START

MOVE TO EMD OF STRING
GET THE RODORESS

CLEAR THE MOST SIGHIFICAMT BYTE
PUWSH THE RADORESS

DOME?

JIF ¥ES

FETCH LAST BYTE

FETCH FIRST BYTE

SWAF THEM

nITTO

LOOP TIL DOME

SELECT THE ROM

PRINT THE STRIMG

ROM=

AT A AN S EEFEE I F LR AL SR LR R E TR LA AR LR LA X A A A EEFE XX L EF T AR RE LSS

GET.

BHLMT

BYT 141
BIM

LOMD R1O, =BIMTAE

POMDO R43,-Ri2

STMD R43, %10, FILEMNAME

CLB Ri1B6
JEB =FXLEHN .
J5B =CLERR.

LOM R2ZB, sGETTING
ADMO R2E6, =BIMTAB

LOM R36,=17,0
ISB =DUTSTR
158 =DECURZ
ISB =DNCURS
LM K10, RS
BIH

BASIC STATEMEMWT, LEGAL AFTERE THEM
FOR RODRESS MATH

LET*S GET OUR BHRSE

GET THE FILE HNAME

SAVE IT AWAY

MAKE SURE THE FROGRAM®S DERLLOCATED
CLEAR THE SCREEM

GET ADDRESS OF MESSAGE

MAKE IT RABSOLUTE

LOAD THE LEWGTH OF THE MESSAGE
QUTPUT THE MESSRGE

GET RID OF THE CURSOR

MOWVE DOWMN OME LINE

GET THE PC

500D FOR AODRESS MATH

T-25

Section 7: Sample Binary Programs

4420
4430
a440
4450
4450
4470
4480
4430
4500
4510
4520
4530
4540
4550
4580
4570
4580
4530
4EQ0
410
qEZ0
4E30
4E40
4850
q4BE0
470
480
4E30
4700
4710
4720
4730
4740
4750
4760
4770
47ED
47390
4800
4B10
4820
4830
4B40
4850
4880
4870
4880
4830
4300
4310
48320
4230
4340
4350
4380
4370
4580
4330

SWARP

GOTEBUF

PHRSIT

FIXIT

MOVE -1

LOMD R24,RZE
JZR GOTBUF

POBD R32Z,-R2E
PUBD =3Z,+R30
OCH RZ4

INZ SWAP

LDM R3E,R30

SBM R3E, =INPHUF

STMD. R3E,X10, BUFLEN

LOB RZ4,=15

FUBD RZ4,+R30
FUBD R25,+<RE

CMB R3E6,=810

JHC PRARSIT

JSB =0OMCURS

CLB R1B

LODMD RZ0, =RSMTBL
PUMD RZ0, +RE
LDMO R42Z,=LAVAIL
FUMD R42,+RE
LOMO R4Z,=RTHSTK
FUMD R42, +RE
LOMD R45, =LWAMEM
FUMD R45,+RE
LOMO R45, =LAVAIL
STHMD R45, =LKAMEMN
J5B =RSETGO

JSB =PARSER

FOMD =45, -REB
STMD R45, =LWAMEN
POMD R4Z, -RE
STHD R4Z, =RTHSTH
POMD R42, -RE
STHMD R42, »LAVRAIL
POMD R20, -RE
STMD R20, "ASHTEL
LDE R1E, =1

CHB R17, =300

JCY FIRIT

BIN

IcrM Rre

GTO OKGET

FOBD R3GE,-RE

JHZ ERREXIT

ICE R3E

PUBD R3E, +RE

ANM R17, =77

CLM R40Q

STMD R40,=ERLIN#
STED R40,=ERRTYF
LDOM RZ4, =IMPEUF
STM RZ4,R2Z2Z

ICM RZ4

FOBD Rz20,+R24
PUBD RZ20,+R2Z
CME RZ0, =40

JZR MOVE -1

JSB =DIGIT

GET THE LEN OF THE STRIME RERD

JIF MO CHARACTERS

GET THE MEXT CHARACTER
PUsH IT 7O IWPUT BUFFER
DECREMENT LEMN COUNT

JIF MORE TO DO

COPY EWDO OF BUFFER PTR
MIMUS THE STRAET OF BUFFER

SAVE IN CASE OF ERROR FOR PRINT

LOAD A CR CHARACTER
PUSH IT OUT FOR PHRRSER

SAYE A 0 FLAG OW RE FOR ERROR TRAP
00 WE MEED TO MOVE THE CURSOR DOWN?

JIF WO
MOVE CURSOR DO B ROW
FOR LIKEDR
SAVE ASSIGH BUFFER POINTER
0N THE RBE STHCK
SAVE SOME SYSTEM PRINTERS
0N THE RE STRCHK
SAVE S0ME MORE
SAME PLACE
5EAVE SOME MORE
AGAIM
MOVE LKWAMEM
UF TO LAVAIL
RESET EVERYTHIMG UP
TRY T0 PARSE THE LIKME
START RECOVERIMNG THIMGS

AMY ERRORS?

J1F ¥ES

CONFIRM MATH MODE

THROW AWAY ERROR TRAP FLAG
LODO®

RECOVER ERROR TRRF FLAG
JIF TWO ERRORS

SET FLAG

FUT IT BACK

CLEAR ERROR FLAGS

CLEAR ERROR FLRGS

CLERR ERROR FLRBGS

CLEAR ERROR FLAGS

GET ADORESS OF BUFFER

COPY

MOVE AHERD TO
GET THE FIRST CHARACTER
MOVE IT BRACK ONE PLRCE
A BLANK 7

JIF ¥YES

IS IT A DIGIT?

THE FIRST CHRRACTER

Section 7: Sample Binary Programs

Ja3o SEM R1G, =BIMI

3340 5TMD R1Q, =BIMTHE

3850 JSB X10,RASHNPET |
3BE0Q CMB R17, =300 |
3870 JHC OKGET

JBEQD LDOMD R10Q, =HIMTRE

3BS50 GTO FIMMSG |
3900 OKGET LDM R10, R4 }
3910 EIN |
38320 SBM R1Q, =0KGET !
3830 STMD Ri10, =BIMTAE

3940 LOMO R45, =HXTMEM

3350 SHMD R45, =LAVAIL

38E0 CHMM R45,=0,2,0 !
3570 JCY OKGETZ f
3980 JSB =ERROR !
ig80 BYT 18D |
4000 TO FINMSG |
4010 GETDOMN LOBD R40Q,=ERRORS |
4020 CME R40,=107

4030 JZE EOFERR |
4040 CME R40Q,=110

40350 IHZ BRDERR

4050 EQFERR CLM R40 |
4070 STHMD R40, =ERLINH

4080 STBD R40, =ERRTYF

4030 ANM R17, =77 |
4100 ERIERR JSE =57240+

4110 BINS LDOM R10,R4 |
4120 BIM

4130 SEM R10, =BINT !
4140 JSB X10,CLOSE |
4130 GTO FIMMSGE

41E0Q OKGETZ LOMD R12,=TOS !
4170 LOM R4S, =BUFFER |
4180 BYT O |
4130 ADMD R45, =BIMNTAB

4200 PUMD R45,+R1Z I
4210 LDM RS1,=240,0,0,0,0,0,2
4220 PUMD RS1, -R4% !
4230 LDM RE4,=0,0,240,0

4240 FUMD RE4,-R4% !
4250 FUBED RS?,+R1Z :
4260 FUMD REE, +R1Z !
4270 FUMD R45,+R1E !
4280 PUMD REE,+R1Z !
4290 FUMD R45,+R1Z !
4300 STMD H45, 10, BUFADR
4310 JSB =ROMISE !
4320 ODEF RIDSTE.

4330 YHL MSROME !
4340 CHME R17, =300 !
4350 JC¥ GETDOMN [
4380 LDMD R1Q,=BINTAB !
4370 LOMD ®ZE,#10, BUFRDR
4380 BIN

4390 LI R3IQ, =INPBEUF |
4400 LDB R3Z, =40 [
4410 FPUBD R3Z,+R30 |

og

GET OUR BRSE RODRESS
RESTORE BIWMTHB CHSE
TRY TO OPEN THE FILE
AMY ERRURS?

JIF N8, IT"S5 THERE
GET OUR BRSE

QUTPUT THE MESSHGE
GET PC

fFRLENT DESTROYED

GET 0OUR BASE RDORESS

SET IT IM CRASE PRARSIHNG BLEW IT AWAY
GET HIGH HODRESS OF RAVRILRBELE SPRACE
GET RVAILABLE MEMORY COUMNT

ENOUGH MEMORY LEFT?

1IF YES

ELSE REPORT ERROR

MEM ONVF

OUTRUT *OOME* MESSRGE

GET REASON FOR ERFOR

END OF FILE ERRER?

JEF Y&
EMD OF RECORD ERROR?
JIF NO, LET IT GU

ELSE CLEAR ERREOR FLRGES

AMD IW =COmM
SET IMMEDIATE BREARK BITS
COPY OF PC
FOR. ARODRESS MATH
GET BRASE ADIRESS
CLOSE THE FILE
OQUTPUT THE O0OME’ MESSAGE
RESET STRCKE POINTER
GET THE RDDRESS OF THE BUFFER
AS A THREE BYTE QUAMTITY
FMAKE IT ABSOLLUTE
FUSH TQ STACK
TOTAL SIZE, MNAME PTR,
FAKE VWARIABLE HERDER ARER
CURREMT LEN, MAx LEN
MORE WARIABLE HERBRDER STUFF
PUSH STUFF FOR STOST: HERDER
MAX LEN STRING VAR (0,1)
RODRESS OF FIRST BYTE OF
MAX LLEM TO STORE INTOD
RODRESS TO STORE INTO
BUFFER RDDRESS
A BAMK SELECT ROM
READ A STRIMG FROM THE FILE
IT'S THE MASS STORAGE ROM
RNY ERRORS 7
JIF ¥YES
ELSEE GET BRZE RDODRESS
GET RADORESS OF BUFFER

HERDER

SAVE
CHLL

GET HUURESE UDF INPUT BUFFER
LOAD A BLANK
FUSH IT TO BUFFER

§ VAR

7-27

Section 7: Sample Binary Programs

5000 JEM MOVE-=1 ! JIF YES

2010 LOB R20, =41 ! ELSE LORD A |

S020 FUBD RZO,-R2Z I PUSH IT 7O THE ROLE

8030 JSB =PRINT. | SET THE SCTEMF SELECT CDDE
S840 BIMW3 LOM R10, Rd | GET PC

SQS0 HIM | CALCULATE BRSE IW CASE PRRSER DESTROYED
5080 SBM R10, =BINI] BINTHE

S070 LOMD R3IGE, %10, BUFLEN | GET LEMGTH OF BUFFER

S080 LOM REG, =I MFBUF | GET THE START ALDORESS

5080 JEB =ORVIZ. | PRINT THE LIKE

5100 GTOD PARSIT | GOT PARSE IT RS A COMMENT
5110 ERREXIT LOM R10,R4 | GET CURRENT RAODRESS

5120 BINW | FOR RODDRESS MRATH

5130 SHM H1G0, =ERREXIT | GET BPGM*S BASE RODRESS
5140 GTO FIMMSG | GO DISFLAY “DOME" MESSAGE
G150 | #5838t s s fd f i F iy FFrFrFrdF 255 idE X T AT F R E L AT AR ETF R AT LT T EFFEFFFTELLE S
3180 BYT 0,36

5170 REVISOM, BINM | FOR RODRESS MATH

5180 LOM R43Z,=400,0 | LEW OF STRIHNG

518906 DEF DRTE | AODORESE AS THO BYTE REL
5200 BYT © | THERE*S THE THIRDO BYTE
210 AOMO =43, =BIMTHRE | MO IT*S ABSOLUTE

5220 PUMDO R43,+R12 | PUSH TO RETURMW STRCK

5230 RTH | DOHE

5240 RSC "B1.202 ,weR 289% ,oC drakcaP-ttelwaH Yoi"

5250 DATE BSZ 0

SZE0 [EF i FF R R R RN FF RN R F A T F A I FFr R AN NN F R R FFFFEFFFEFFEF I EF S5 555
5270 SAVING RSC "5AVE 1M FROGRESE!"
5280 GETTIMG ASC "GET IM FROGRESS

5230 DOMNE RSC " DOME"
5300 ASE - et
5310 STAR B5Z 0

5320 SAVIOTFC BSZ 7

5330 SAYSCTEM BSZ 10
5340 FILEWAME BSZ: 3

5350 BUFADR B5Z 1

53380 BUFLEMN BSZ 2

5370 BSZ 300
9380 BUFFER BEZ 0

ke e e E R e e e R R
5400 RSHTHL ORD 100125
5410 RS5IG, DAD B5466
5420 BIMTAB ORD 104070
5430 CALVRE OARD 100030
5440 CLERAR. 0RO 142235
5456 COMBI3 OAD 4516
5450 DECURZ DRD 13467

5470 DIGIT 0RO 21710
5480 DWCURS OAD 13731
5430 DRMIZ. 0DAD B722
5300 ERLIMA DRO 100114
3510 ERROR DRO 10223

5320 ERROR+ DRO 10220
5530 ERRORS DAD 100123
5540 ERRTYF DRD 100124
5550 FLDCOM DARD. 100053
SSG0 PHLLH oRO 31001
5570 GO1ZH DRO 24707

7-28

Section 7: Sample Binary Programs

5580
5590
200
5810
5620
5630
5640
SES0
SE60
2670
SEBO
5650
5700
5710
5720
57aL
5740
5750
5760
5770
5¢¥80D
5790
5800
S810
5820
5830
5840
sS850
SBEOQ

INPBUF
IOTRFC
LAVAIL
LLOCOM
LSSET
LHAMEM
MSCRE .,
MSPRMT
MSPUR.
MER0OME
HETDRT
M¥THMEM
OMEI
OUTSETR
PRRSER
PREOL.
FRINT.
PRSTR.
PTRZ -
FTRZ+
ROSTR.
ROMJISH
RSETGO
RTHSTHE
SCTEMP
STZ2404+
STREX+
TOS
FIN

0RD
ORD
OR/0
DAD
oAD
ORD
DRD
0RO
DRD
CRD
CRD
DAO
oAD
ORD
OAD
0AD
ORD
ORI
DRO
ORD
ORD
DRD
0RO
DAD
ERD
DARD
ORD
DARD
FIM

100236
103643
100025
100050
E445
100041
ES517E
BEZZ1
E4B04
420
101645
100022
SE73E
14020
20000
FOqES4
71332
BEEEZ2
177715
17771E
BE7314
6223
ST7T00
100033
10172
21067
Z37E
101744

7-29/7-38

Section
VIII

REFERENCE MATERIAL

8.1

verview

This section consists of:

An alphabetical listing of the global file.
Bystem operation and routines.

Parsing flow diagrams.

General hook flowcharts for the following:
CHIDLE

DCIDLE

I0GP

I0OTRFC

IRQ20

EYIDLE

PREIDL

RMIDLE

SPARP and SPARI

System run time table tokens and attributes.
Error messages.

The assembler instruction set.

An assembler instruction coding table.

4 keycode table.

Some programming hints.

Section 8: Reference Material

B.2 The Global File

The global file as it appears on the disc is listed here. It gives the
permanent addresses in memory of many of the system routines. The
global file also contains locations of system pointers, buffers,
variables, and constants which may be referenced in a binary program.

Although it is usually more convenient, it i5 not necessary to use the
file GLOBAL as a label table. You may create your own on a disec, or you

may specify the addresses of the system routines called in a binary
program by adding them to the label table within the program.

Name Address Description

I T T T e 2 FEFAEEFFEFFFITELELEEREFCLZZELEEET

1090 | = &
1020 % HPE-B87 GLOBAL FILE FOR USE WITH THE ASSEMBLER ROM. *
1030 1+ *
1043 |% () 1982 Heawlett-Fackard Co, *
1050 |#* *
1060 | = *
1070 | #3#3fEs r X r R N R R R R A H R A AT AR A F AR EIXFF A ER R FEE SRR SRR LR xR
10BD |%MOTE: Beware of looking up & routine 1n the glokal File and using =
1090 |®1t without mlsc looking up the documentation. This 1s especianlly *
{100 |%true ¥ the routine hHas an entry polnt address between S0000C and *
1110 |*77777, as it may need to be called through ROMISE. *

R e o e e Rt e e
1130 GLO

1140 ABSS DAD 54525 | ABS FUNCTIOM RUNWTIME CODE
1130 ACTB-3 OAD 177515 | T-0 MODODULE RDDRESSES
1160 RACTHE-6 DRO 17?7512 | I-0 MODULE ADDRESSES
1170 RCTBAS DRD 177520 { I/0 MODULE RDDRESSES

1180 ACTHS+ 0RO 177521
118G RCTHMSU 0RO 103560
1200 ROONO ORAD 53C30
1210 ADCDROI ORD 52745
1220 AGLBRS ORO 1034186

I-0 MODULE ARDORESSES

ACTIYE MSUS FOR MASS STORAGE ROM

ADD TWO REAL MUMBERS IW R40 FAMID RSO0

ADD 2 REAL OF IMTEGER WUMBEFRS OFF STHCK
FLOTTER ROM STOLEM REAM BASE ACDRESS

1230 ALFHA DARD 21656 CHECK TO SEE IF R20 15 RSCII A-Z2 OR a-z

1240 ALFAL. 0RO 124686 FORCE ALPHA ALL ‘mMODE

1250 RLPHA OAD 1254£ FORCE ALPHA OR ALPHA ALL IF NOT GRAPHALL
12E0 ALFHA. 0RO 124173 FORCE ALPHA HORMAL

1270 APRBEAS OARD 103420 ADOVANCED PROG ROM STOLEM RAM BARSE RODR,

1280 RSIZE OAD 104744 i % OF BYTES IM RALPHA (4K OR 16K)

1230 ASMBARS OAD 103426 ¢ ASSEMHELER ROM

1300 ASHTBL oRD 100125
1310 ASSIG. OAD 55466
1320 RATHE. DRD #7157
1330 AUTOH ORO 102103

24 BYTES ASSIGH FILES
ASSIGHN A DISC BUFFER TO
ATHZ FUMCTION

AUTOD LIME ® LAST VAL

FILE

I

Section 8: Reference Material

HMame

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
18570
1580
1590
TEOO
1610
1BZ0
1B30
1640
1650
1EED
1670
1EBOD
1E9O
1700
1740
1720
1¥30
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

AUTOIL
BEEF.
BINERS
BINTARE
BKSPC
BLELIMN
BOS
BOVAR
BRINI
BERBRAS
BYTCRT
CALVRE
CEIL1D
CHIDLE
CHKSTS
CHSRUI
CLERR.
CLKEDAT
CLKESTS
CLREDOL
CHTRTR
COLUMM
COMMAS
COMMA.
CONBIL3
CONBIM
COMCA.
CONINT
CONTR.
CO0S10
comio
COUNTE
CFRERAS
CRT.
CRTBARD
CRTELK
CRTEYT
CETDAT
CRTINT
CRTLST
CRTROF
CRTPUP
CRTRAM
CRTSAD
CRTSTS
CRTUMK
CRTHPO
CRTHRS
Cha.,
CSEC10

Address
ORD 100108
DAD 10381
OAD 104073
DAD 104070
DAD 11520
OAD 14185
ORI 105350
DAD 100014
ODRD B113
DHRDO 103422
CAD 14004
DAD 100030
RO 54412
DAD 103870
DAD 13204
DAD 5257E
ORD 14223
OFAD 177413
DAD 177412
ODARD 13447
DAD 13245
DAD 14208B
[DAD 7Z14E
DAD P2ZES
0AD 451E
DAD 4401
TAD 7EZEE
DAD 4511E
DAD B1B20
DAD 54353
0ORD 34333
DAD 149411
DADO 1034532
DRD 57307
ORD,, VA F7a1
DAD 12246
OAD 100206
DHD. V2703
IAD 12176
DAD 101101
DRAD 12334
DAD 12341
DAD 100210
DHD 177700
oAD 177708
DAD 123E0
DAD 12374
DRD 101655
OAD 100212
0RO S4200

Description

HQTD LIWE § - THE

BEEF STHTEMEMT

S BP'S RAODRESSES

3 BYTES BP BASE ADDRS.

BRACKSFRCE KEY: RUNTZME

ELBME LINE O CRT

FIXED SIZE R12 STHCK

BEGIW OF LOCAL VAR

CHRLL IWNIT ROUTIMES IM BIMARY PROIGRAMS
FROGEAM DEVELORPEMEMT ROM STOLEM RAM BESE
SEND ADDORESS TO CRTBRD AMD CRTBYT
STBRT 0OF CRALC YARIABLES

CEIL FUMNWCTIOW RUWTIME CODE

CHARR. EDITOR IMTERCEPT RAM HOOK
WRIT FOR CRT CONMTROLLER MOT BUSY
CHAMGE SIGH OF REAL OF INTEGER HUMBER
CLERR RLPHAR DISFLAY

CLOCK DATH

CLOCK STATUS

CLERR TO EWD OF LIWNE OM CHEHT

COUNT RETRBCES (BO » SECONI

FIMO WHAT COLUMM OW ALPHA DISPLAY
FPRIMT STRING,

FRINT MUMBER,

CONMVERT 3-BYTE BIMARY H TO FEAL
COMVERT 2-BYTE BIWMARY ® TO REAL
CONCRTEMATE TWO STRINGS

CONVERT A REAL H TO A 13-BIT SIGHED BIM.
10 MODULE *“COMTROL® STHTEMEMT
COSIME FUWCTIOHM

COTEMGENT FUMCTION

®EY REPEAT ROUTINE

CHFR ROM

"CRT IS" STHTEMEMT

CRT BYTE ADDRESS

FILL RBLPHRA MEMODRY WITH CHR&(133's
CET BYTE HDDRESS

CRT OATH

INITIALIZE CRT MEMORY

B LINES OM CHRT PAGE -1

FOWER DOWM CRT HIGH YOLTRGE

POMER UP CRT HIGH WOLTRGE

CRT START ADDRESS (COPY IM RAM)
LRT START ADDRESS I~0 BODRESS

CRT STRTUS I-0 ADDRESS

UMBLAKKE THE CRT

BLAME THE CRET

CRT STRTUS 1IN RAM

CRT SELECT CODE (B BYTES:
COSECANMT FUMCTIOH

8-3

Section 8:

Name

1H40
1850
1BED
1870
1gao
1890
1900
1310
1920
1930
1340
189540
1960
18970
1980
1980
2000
2010
2020
2030
2040
2050
2080
2070
&oao
2030
2100
2110
2120
2130
2140
2150
2160
2170
2180
2180
2200
2210
2220
2230
ZZ40
2250
2280
2270
2280
2290
2300
2310
2320
2330
2340
2350

CSIZE.
CURS
CURSON
CWHILM
ORLLED
DALLOC
DRTE
ODRTE .
DCIOLE
DCLIMA
pCsLOP
DECURZ
DEFA+,
DEFA-,
DEFAUL
DEFMSU
DEG.
OEGYO
DOFLAG
OGHOOK
DIGIT
DISBUF
oIspPE,
DISPLM
DISPTR
DIVi0Q
DIvZ
OMHOCR
OMCUR,
OMCURS
ORAW,
ORG
ORVIZ.
EDMODZ
EMOWVDN
EmOvUR
ENOSR
EQDJZ
EOYAR
EPS10
EQ%.,
EQ,
ERBEMD
ERLINH
ERNUMH
ERREFH
ERREUF
ERBOMH
ERROR
ERROR+
ERRORS
ERRROM

Beference Material

Address

ORD
ORD
ORD
DRO
DRD
0RO
ORD
0RO
0RO
ORI
0RO
0RO
ORI
0RO
0RO
0AD
0R/D
0OR/D
oAb
oAD
DRD
08D
BARD
DRD
ORDO
ORD
DARO
oRD
bRD
0R/D
bGRO
DRD
DAD
DRD
ORD
DARO
bRO
ORD
LAO
DAD
ORD
RO
DAD
DRD
RO
DAD
DARD
LAD
RO
ORD
ORD
oRD

BESTO
14030
105347
72401
121104
47123
121133
JZ2073
104035
34807
5132
134E7
E1576
£1604
100152
103477
BZ2257
54736
104224
104044
21710
100542
TI3i
101138
100080
52441
52435
25175
13B0¢
13751
E4727
1001680
BieZ
1007122
32181
32231
14750
14525
100017
54722
A5E4
62623
1005492
100114
10017
1033701
10047E
100121
10224
10220
100123
100120

Description

‘CSIZE’ STRATEMENT

TURMN CURSOR OM

CURSOR OW FLRG

FORMAT R REAL MUMBER FOR CQUTPUT
DERLLOCATED FLRAG

DE-ALLODCHTE THE BASIC PROGRAM

JULIAN DAY ¥EAR

ODATE FUNCTIOM

ODCOMPILE HOOK

DECOMFILE A BARASIC PROGEAM LIME HUMBER
REWERSE A STRIMG FROM EXTEMIED MEMAIRY
TURN CURSOR DFF

TURH MRATH DEFAULTS OM

TURM MATH DEFAWLTS OFF

DEFARULT EREOR FLRG

DEFAULT ™M5US

PUTS THE COMPUTER IM DEGREES TRIG MODE
RADIANS TO DEGREES COMVERSION
DIRECTION FLAG FOR DISC READSWRITE
DIGITIZE HOOK FOR CRT DIGITIZING

SEE IF RZ0 COWNTRIMS A DIGIT (RSCII CODE:
DISPLRY BHUFFER

SET SELECT CODE TG CRT IS DEWICE

1 BY¥TE DISPLEY LIME LEMGTH

DISF BUFFER PTR

DIVIDE 2 REAL MUMBERS IM R40 AMND RSO
DIVIDE 2 REAL OF IWTEGER MUMBERS OM STHH
ODEMAMDO CARRIARGE ETH, BAMG (13, OR @ SIGH
MOYE CURSOR DCOWN OH CURRENT CRT PAGE
MOVE CURSOR DOWM IW ALPHA MEMORY

ORAW A LIME OW THE CRT

DEG/RAD-GRED FLAG

DUTPUT WECTOR ROUTIMWE

EDITGR MODE [IMSERT~BEPLALCE

EXTEMDED MEMORY MOWVDM

EXTEMDED MEMORY MOVUF

tHD OF SERVICE ROUTIMEL(FI® UP EMC'S ORP2
EMD OF -JOB (TURK OFF KEY)

EMD OF LOCAL VARIABLE POINTER

EPS FUNCTIOHN

COMPARE TWO STRIWNGES FOR EQUARL

COMPARE TwWO HUMBERS FOR EQUSL

tMD ERROR BUFFER + 1

LINE#® OF BAD LIME

ERROR MUMEER

EFGM # THRT FERPORTS THE ERR

ERROR BUFFER {44 BYTES)

FOME OF LAST ERROR

REPORT ERRUOR ROUTIME

FREFORT ERFOR AMD THEOW AWAY t RTH RODR.
RUNM TIME ERRORS

ROME OF ERROR

Section 8: Reference Material

Name

2360
2370
2380
2390
2400
410
2420
2430
2440
2450
2480
2470
2480
2430
2500
£510
2520
2530
2540
2550
2560
£570
2580
25890
ZEO0
ZB10
ZBZ0
2830
ZEA40
2650
ZBE0
ZETO
26RO
ZBS80
2700
2710
2720
2730
2740
£750
2Z7E0
2770
2780
2780
2800
£B10
2820
ZB30
ZB40
2650
ZBED
2870

ERRSC
ERRTYF
ERTEMF
EMEC
EXFS
EXSTAT
EXTFIL
FASTHS
FEPEM
FETAVA
FETSVR
FILTYF
FLDCOM
FLIP
FHAM
FHAM+S
FHOLIH
FORMAR
FFS
FRAME .
FHBIM
FUCURRE
FUWPRGHM
FHUROM
FLHUSER
GEH
GEH+NN
GoA
GO12ZH
GOTH
GOOREN
G1Z20R4
G1ORZN
GCHAR
GCLR,
GEMINI
GEQS,
GEQ.
GET)
GETIN
GETZH
GET4H
GETCMA
GETPR?
GETPHR
GINTDS
GINTEN
GLIME
GLOADO
GHAM
GHAM+S
GOTOSU

Address

DARD
0RO
aR0
DRD
ORD
0ARD
0RD
ORD
ORD
ORD
oRD
ORD
DARO
oRD
ORD
oAD
ORD
OAD
ORD
ORD
ORD
DAD
0RD
0RD
08D
DRD
0RO
CAD
ORO
oRO
ORD
DRD
ORD
0RO
DRD
DRD
DRD
DRb
DRD
ORD
DRD
DRO
DRDO
ORD
DARD
CRO
DRD
ORD
DRD
DRD
ORI
DRE

108141
100124
104200
Ve
53174
177426
110Mmo
11565
50333
45505
45305
104671
100053
14544
103503
103510
32355
27034
S4EES
EEYES
100044
100008
100003
110130
100000
24543
24642
11608
24707
24725
24744
24772
24761
216838
GZZ14
104157
IBE7
E2734
23450
24557
Z4B30
24535
23477
24740
24582
17740
17400
104740
FZ510
103515
1035822
03ty

Description

ERROR SELECT CODE

ERROR TYFE

12 BYTES TEMP

BEGIMNIWG OF MAIMN E®EC L
EXP FUNCTION fe~k)
EXTENMDED IO STATUS
EXTEMDED FILE TYPE THBLE
FAST BACKSFACE (SHIFTED
FIWD BIMBRY PROGRAM (BY
FETCH ARRAY VARIABLE ADD
FETCH SIMPLE WARIABLE AD
" BYTE TAPE, TEMP

FIRST LIME DECOMPILE
TOGGLE THE KEYBOARD “FLI
FILE HAME 15T HALF

FILE NAME ZMDO HALF

FIMD A BRSIC PROGRAM LIM
PRARSE AM ARRAY REFEREMNCE
FRACTIOWAL PART FUMNCTIOM
FRAME THE CRT

FWA USER BIN PROG

PTR TO CURREMWT PGM

FlWA PROGRAM AREA

FWA USER PROGRAM ROMRAM
FWA USER RREA

GET STRIMG & MNUMERIC

GET STRING & WNUMERIC WIT
TOGGLE BETHWEEM GRARH AMD
GET 0, 1, OR 2 HUMERIC ¥
GET O OF 1 HMWUMERIC wALLUE
GET 0 OF Z MUMERIC %RLUE
GET 1, 2, OR 4 NUMERIC W
GET 1 0OR 2 MUMERIC WARLUE
GET A CHRRACTER AT FARS
CLEAR THE GRAPHICS CRT D
GEMINI FLRG

COMPARE FOR GREATES THAM
COMPARE TuWO0 HUMBERS FOR
GET A CLOSE PAREMTHESIS
FRARSE OME MNUMBER

PARSE TWO HUMBERS

FARSE FOUR MUMBERIC FRRA
DEMAND & COMMA AT PRRSE
GET SOME OFTIOMAL PBRBME
GET A SET MUMBER OF MUME
GLOBAL IWTERRUPRT DISEELE
GLOBAL IMTERRURPT ENRELE

ooF

BRCKSPRCE KEY)
BFGHM &)

REES

IRESS

P OSTATUS

E In MEMORY

H OPTIONALS
ALFHA
ALUES

=

5

ALUES

5

TIME
ISPLAY

OF EQUAL TO
Yo

METERS f
TIME !
TERG

RIC PHRAMETERS

HMUMBER OF DOTS OW A LIME OF GRAPH SCREEN

TGLOARDY STRATEMENT

FOR: MASS STORRAGE COPY R
FOR MASS STORAGGE COPY, R
FARSE A GOTO~GOSWUE LIMNE

EMAME, ‘ETC.
ENAME, ETLC.
HUMBER OR LABEL

Section B:

Name

2880
28390
£900
2910
2920
2930
2340
2850
28860
2370
2380
28990
3000
3010
JUEG
3030
3040
d0350
3060
3070
3080
2030
3100
L P B
3120
3130
3140
3150
el
v
ERR-IY
3130
A200
3210
3220
3230
3240
JZ50
260
270
280
3290
3300
Jno
J3Z0
3330
3340
3350
3360
3370
3380
3390

GRS,
GR.
GRAD,
GRAFA.
GRAFH
GRAFH,
GSIZE
GSTOR,
HLELIHN
HMCURS
HORM
I1COS
IDRAW .,
IMERR
IMOVE.
IHCHR
IMF 1)
IMIT.
IMFE=-3
INPBLIF
IHPCOM
IMFR1O
IMPTOS
INPTR
INPUT.
INTS
IMTOILW
INTEGR
IMTHUL
INTORL
IMTRSC
I0BRSE
IOBITS
I10DATH
I0INWTC
105P
I0STAHT
105K
IOTRFC
1PS
IFLOT,
IRGQ20
IRGZED+
IRQPAD
IRGRTH
ISIN
ITEN
KEYCHT
KEYCOD
KEYHIT
KEYLA.
KEYSTS

Reference Material

Address
ORD 03E1 4
DAD 2705
DRAD 2274
DAD 1ZEZE
ORD 12580
0RpD 12574
OAD 1047472
DRAD FE711
DAD 14110
DAD 13EEY
DAD 19400
DOAD ?P7P2Sq
DOAD E47OE
ODRD 1937E4
OFAD B4543
OARD 14282
OAD 54321
OAD 1241
ORD 100233
DARD 100236
0DAD 100167
oRD 101717
OARD 100204
OFAD 1S1143
OAD 18314
OAD 54372
OAD 54801
OAD 2133
OAD 53872
ODAD 57125
OAD 177500
OAD 103414
DAD t01140
DRDO 177422
ORO 177421
DRD 103652
DRD 177420
DRO 1001E3
DRD 103643
oRD 54770
DOAD B4BEQ
DRDO 103742
DRI 1835
DARD 103757
DAD 103760
0RO 77244
DRO 77264
DAD 100153
ODAD 177403
OAD 101142
DAD 13380
ORD 177402

Descripkbion

COMPARE STRINGS FOR GREATER THAN
COMPARE MUMBERS FOE GREATER THAN
SET THE COMPUTER TO GRRD MOLE
FORCE GRAPH ALL MODE

SWITCH TO GRAPH UMLESS [N ALPHA ALL
FORCE GRAPH NORMAL MODE

W OF BYTES IN GRAPH SCREEN (12K OR 16K
"GITORE * STATEMENT

DISP STRING WITHOUT CR AND LF

HOME CURSOR OM CURRENT CRT FAGE
LOWER LEVEL *BEEP’ ENTRY POINT

RRC COSIME FUMIZTION

*IDRAW’ STRTEMENT

IMAGE ERROR INTERCEPT RAM HOOK
*IMOVE® STATEMENT

RERD ONE CHARACTER IN FROM CRT MEMORY
INFINITY FUNCTIONM (RETURNS BIGGEST #)
*INIT/ KEY EXECUTION

3 PERMAMENT BYTES IN FROMT OF INFBUF
PARSER INPUT BUFFE

IMPUT COMPLETION RODRESS

R10 SAVE DURING INFUT

INPUT TOP OF STAK

INPUT LINE POINTER

INPUT RUNTIME ROUTINE

INT FUMCTION

INTEGER DIVISION (%) RUNTIME

GET AN INTEGER AT PRARSE TIME
MULTIFLY TWO BINARY NUMBERS

CONVERT A TAGGED INTEGER TO & REAL
140 CARDS SELECT CODE ADORESS

1.0 ROM BASE RAM POINTER

! BYTE I-0

1+0 DARTA

10 CONTR-INTRUPT

1-0 SERVICE POINTER RAM HOODK

I-0 STRATUS

1-0 SERVICE WORD

7 BYTES TRRAFFIC INTERCEPT

1P FUNCTION RUMTIME CODE

*IFLOTY STATEMENT

10 INTERRUPT RAM HOOK

1-0 INTERRUFT RAM HOOK

I»0 INTERRUPT RAM HODK

I-0 INTERRUFT RAM HOOK

ARC SINE FUNCTION

ARC TANGENT FUNCTION

“EYEDARD REFERT COUNTER

XEYBOARD CODE FAND ECJOB I~0 ADORESS
KEYEDARD ASCII

KEY LABEL RUNTIME ROUTIME

®EYBOARD STATUS [40 ROUTINE

Section 8;

Name

3400 KEYTRE
3410 KRPETH
3420 KRPETZ
3430 KYIDLE
3440 LRBEL.
3450 LASTIM
J4B0 LAYAIL
3470 LDIR.,
J480 LEGCAZ
3490 LEGCAL
3500 LEGENZ
3570 LEGEND
3520 LEGS.
3530 LEG.
3540 LIMNELN
3550 LINET.
3560 LIST.
3570 LLDCOM
3580 LLN-1
3530 LLH-2
JE00 LHNS
3610 LNTYPE
JEZ20 LOGTS
3830 LSTBUF
A640 LSTDAT
3650 LTH.
JEEDQ LT.
3670 LTCUR,
3680 LTLURS
dE90 LTYFEH
4700 LWAMEM
A710 MAXIG
3720 MBASE
3730 MINIO
3740 MLAD
TS0 moDio
3TED MODRDR
3770 MOYCRS
37B0 MOVOH
3790 MOVE.
JBCO MOVUP
3810 MPY10
820 MPYROI
3830 MSBRSE
3840 MSCRE,
AE50 MSHIGH
IBEOD MSLOW
AB70 MSPRNT

3BEO MSFUR,

1880 MSREM.
3900 METIME
31910 NRRRE +

Reference Material

Address

OAD
0RO
ORO
0RO
oAD
oRDO
OAD
ORD
OAD
0oRD
0RO
ORD
0OAD
0ORO
ORD
bOAD
oAD
ORD
0RO
DRD
ORD
DRD
DRD
ORD
ORD
DRD
ORD
DAD
ORD
ORD
0RO
0oAD
ORD
ORI
oRD
0RO
CRD
CRD
DFAD
OAD
DRD
ORD
OAD
ORDO
DRD
ORI
OARD
ORD
ORD
OAD
ORD
0AD

102016
100154
10155
103677
BFZEZ
100475
100025
E7O52
101525
101405
101265
101145
el =1
BZERE
101714
EE33E
352
100052
104231
104233
52345
104750
el
103200
101650
2635
EZE43
13623
13757
104537
100041
56144
1034924
58125
177424
52541
13255
13271
57172
E4B34
57838
53357
53517
103412
ES17HE
103764
103773
BEZZ1
E4B04
E47Z4
104002
23481

Description

BASE RODDR KEY THBL

MAJOR KYBD REPERT

MIMOR KYBOD REFERT

KEYBORRD INTERCEPT

LABEL STATEMENT

EMD OF IMPUT BUFFER

LAST AYAIL WD IN FGHM ARERA

LOIR" STATEMENT

CALC KEYLRBELS (BTM ROE)

CALC KEYLARBELS (TOP ROW?

RUM KEYLAEBLES (BTM REOWI

RN KEYLABELS (TOP ROW)

COMPRARE STRIMGS FOR LESS THRW OR EQUAL
COMPARE HNUMBERS FOR LESS THAW OF EQUAL
DEVICE LIME LEMNGTH

"LIME TYPE® STRATEMEMT

TLISTY STHTEMERNT

LAST LIME DECOMPILE

PGSIZE = 0OME LIME

PGEIZE - TWO LIMES

HMATURAL LOGERITHM FUNMCTION

LINE TYPE POINTER THBLE

BARASE 10 LOGRARITHM FUHCTION

LWA + 1 DIsC BUFFER

LAST DATA ADDR. FOR DISC READAWRITE
COMPARE STRIMGS FOR LESS THRM

COMPARE MUMBERS FOR LESES THFM

LEFT CURSOR OM CURRENT PRGE

LEFT CURSOR IW HLPHHA MEMOEY

LIME TYFE #

LAST WORD AYRILABLE USER MEMOEY

MAX FUNCTION RUNTIME CODE

MATRIX ROM STOLEW RAM BRSE RDORESS

MIM FUNMCTION RINTIME CODE

SERIAL POLL REGISTER

MOD FUNCTIOW RUMTIME RADODRESS

KEEPING ROORESS IM ALPHA MEMORY OM CRT
MOVE CURSOR BY SPECIFIED RAMOUNT

MOYE MEMORY COWTENTS WITH DECREASING PTR
"HMOVE" STHTEMENT

MOVE MEMORY CONTENTS WITH IHCRERSIMG PTR
MULTIPLY TWO REAL #°S IM R4 ANO RSO
MULTIPLY: TWO REAL OR IMTEGER ®s 0OM STRCK
MASS STORAGE ROM STOLEW EAM BASE HDORESS
CREATE FUNTIME CODE

M5 HIGH LEVEL HOOK

MS LOW LEVEL HEOK

PART OF PRIMT® RUWTIME COCE

PURGE RUWTIME CODE

"REMAME * STRTEMEMNT

MS TIMEQUT HOOK

SCAN AWD PARSE A MUMERIC ARFEBY REFERENCE

8-7

Section 8:

Name

J3Z20
3830
3340
J3550
3960
J9F0
3580
3330
4000
4010
4020
4030
4040
4050
4080
4070
4080
4090
4100
411G
4120
4130
414C
4150
4180
4170
4180
4130
4200
4210
az2z20
4230
4240
4250
4280
4270
4280
4230
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430

8-8

HRARREF
HUMCOH
MHUMYH+
HUMYVAL
MXTOART
MXTHEM
HETRTH
OMEH
OMET
OMHER
OMEROI
DHEX
OMFLAG
OFTEBRS
DUTCH1
OUTCHR
OUTSTR
F.BUFF
P.FLAG
F.PTR
P, TYPE
PHGES.
FPRGEST
PHGESZ
PARSER
PEMH
PGSIZE
PIIO
PLHOOK
PLIST.
PLOT.
PLOTSY
POS.
FROLL
FRARRS
PRARR.
FRORVE
FROVF +
FREDOL.
PRINT.
PRLIKE
PRHNTLM
PRNTR.
PrEHUM.
FRSI DL
FRSTR.
FRTBLF
PRTFTR
FPs.C,
PTR1
PTR1+
PTRY -

Reference Material

Address

ORD
0RO
0RO
0RO
0R/D
0RD
ORD
DRD
bRO
0RO
oRD
0RO
ORO
OAD
ORD
ORD
0RO
DARD
DRD
DRD
EGU
DAD
DRD
DARD
OARD
OAD
OARD
OoRD
ORD
DRDO
0RO
0RD
oRD
ORD
DRD
DAD
OAD
ORD
bAD
0RO
CRD
ORD
0RO
OAD
OAD
ORD
0AD
ORD
oAb
DRD
DRD
DRD

234865
235351
Z2403
22405
101645
100022
100036
12153
56736
SEVFT
57035
5EEV3
1 DDDES
1G017T5
14130
14143
14020
1017086
101712
101710
E
12756
13001
13103
20000
104535
104227
54374
103661
BE344
BE4E52
100151
q227
177423
TO730
TOIET
TA023
103550
0484
71332
T1841
101137
75831
EFZ20
103733
EEEEZ
107454
100062
100222
1737210
1777912
177711

Description

FARSE A MUMERILC ARRAY REFERENCE

FARSE A NUMERIIZ CONSTANT

SCAN AND PARSE A HUMERIC EXPRESSIOM
PARSE A MUMERIC EXPRESSION

HEXT DRTA ADDRESS FOR DISK READ<WRITE
MEXT BYTE RAYAILABLE MEMORY

HEXT AYAILABLE GOSUB-RTH

GET 1 NUMBER OFF STACK RS SIGMED BINARY
GET 1 HUMBER OFF STRCK RS TRGGED INTEGER
GET 1 MUMBER OFF STRACK RS FLOATING POINT
SET 1 NUMBER OFF STRCK AS REAL OR INTEGR
GET 1 WUMBER OFF STACHK AS UMWSIGHED BIW.
ON GOSUB FLAG

2 BYTE PERMAMENT OFTION BASE

QUTPUT A BYTE TO THE CRT

CUTPUT A CHARACTER TO CRT

QUTPUT A STRIMNG TO CRT

IMDIRECT BUFFER POIMTERS

IMOIRECT BUFFER FLAG

INDIRECT BUFFER POINTER

OFFEET IWNTO BRSIC PCH TO GET TYPE BYTE
FAGESI ZE RUWTIME CODE

FAGESIZE 18

FPRAGESIZE 24

SYSTEM PRRSER

(PEM #) ® 3 FOR INDEXING

OF BYTES ~ PHAGE

PI FUNCTIOM RUMTIME CODE

PLOTTER HOOK

fPLIST STATEMENT

“PLOT* STATEMEWT

FLOTTER ON-OFF FLAG

FOS FUNCTION RUMTIME CODE

FARALLEL POLL REG

PRINTH STRIMG RRRAY TO OISC FILE
FRINTH MWUMERIC RARRAY TGO DISC FILE
FRINTER DRIVER ROUTI®NE

SPECIAL CHRRACTER FLAG FOR LIST TIME
FRIMTe EMD OF LIME (DUMP BUFFER)

SET SELECT CODE TO PRINTER IS DEVICE
PRIMNT LIME RUWTIME CODDE

1 BYTE PRINTER LIWE LEMGTH

FRINTER IS5 STRATEMENT

FRINTE A MUMBER TO A DATA FILE

FARSER: RAM HOOK

PRINTE R STRIMG TO A OATA FILE

FRIMT BUFFER

FRINT BUFFER PTR

PRINTER SELECT CODE

I-0 ADDRESSES FOR EMC POINTERS

I-0 ADDRESSES FOR EMC POIMTERS

10 PDORESSES FOR EMC POINTERS

Section 8;

Name

4440
4450
4480
4470
4480
4430
4500
4510
4520
4530
4540
4550
4560
4570
45B80
4550
400
4810
4620
4530
4E40
4650
4EEBO
4570
4EHD
46390
4700
4710
472D
4730
4740
4750
4T7ED
4770
4T7ED
4730
4B00
4810
qE20
4830
4840
4E50
4HED
470
4HED
4830
4900
4310
4920
4830
43940
48950

PTR1-+
FTR2
FTRZ2+
PTRZ -
FTRE =+
REO+10
REO+12
REO+14
RED4+2
REO+4
REDO+E
REOK
RAD,
RAD1G
RALO+1
RALIO+2
RODARR®
ROARRR .
ROMUM.
ROSTR.
READ.
RECBUF
REFHWUM
RELMEM
REM1O
RESET.
RESMEM
RESULT
RETREHI
RMEM
RMIDLE
RND1 O
RHOLZ.
ROMEXD
ROMFL
ROMI NI
ROMISE
ROMLET
ROMRTH
ROMTRE
RPLOT,
REELEC
RSETREG
RSUMBK
RTCUR.
RTCURS
RTHSTHK
RULITE
S10
SHD?
SAVERE
SAVRO

ORD
0RO
0RO
0RO
0ORD
ORD
0RO
ORD
0RD
ORD
DRDO
oRD
DRD
DRD
ORD
ORO
ORD
DRD
0RO
OARD
0RO
ORD
ORD
ORD
ORD
ORD
0RO
oRo
0OR/D
oAb
DRD
0RO
DRD
CAD
oRo
ORD
RO
0AD
ORD
CAD
OARD
oRD
DRD
nAD
ORD
0RO
DARD
0R/D
0RD
ORD
DAD
0RD

Reference Material

Address

197713
177714
17PPIE
177715
177747
EO0YD
OO 2
EQOT4
BOO0DZ
EQDD4g
BOODE
EODO0
BZ2Z2B7
54472
103307
103310
70312
70106
BrS03
E7314
BRZZ1
1OZ2B00
27530
J1777
52533
5407
31741
100070
13234
105343
103708
53741
585713
104145
104085
EOS5S
Bg2d
104143
B207
104105
E4EEE
VPP430
ZE234E
IAVETOD
1351
123765
100033
177704
103367
13723
104060
103200

Description

I-0 RAODRESSES FOR EMC: POIMTERS

1.0 ADORESSES FOR EMC POIWTERS

1v0 ADORESSES FOR EMC POIWTERS

I-0 ADORESSES FOR EMC POINTERS

1-0 RODRESSES FOR EMC POINTERS

ROM ERROR MESSAGES

ROM IWNITIALIZATION

TEST IMITIALIZATION

ROM RUMTIME FOINTERS

ROM R3ICII TRELE

mOM FRESE THELE

FIRST ADORESS FOR ROMS

PUT COMPUTER IN RADIANS TRIG MOGIOE
OEGREES TO RADIAMS COMVERSIDH

USED HY INTERRUPT SERVICE ROUTIMWES
USED BY INTERRUPT SERVICE RDUTIHES
RERDR A STRIMG ARRAY FROM OISK FILE
RERADH A WUMERIC ARRAY FROM OISK FILE
READ® A NUMBER FROM DISK FILE

FEADA | STRIMG

HEAD® POIMTER POSITIONINMG

CISK BUFFER 400 BYTES (256 DECIMAL)
FRARSE. A HUMERILC VYARIABLE REFERENCE
RELEASE TEMPORARY MEMORY

"RMDO" FUNCTION (REMAIMIERI

RESET KEY RUNWTIME CODE

RESERVE SOME TEMPORBRY MEMORY

LBST CALCULATOR MODE RESULT

WAIT FOR RETEACE HIGH FROM CRT
RESERVED MEMOR'Y COUNT

EXEC LOOF RAM HOOK

FEHDO FUMCTIOW (GET & RAMDIOM HMUMBER:
RAMDOMI ZE COMMAND

EMD OF ROM TRBLLE ENTRIES

ROM FLAG FOR IMITIALIZATION BOUTINES
CALL BPGM™S BNDO FOM’'S IWNIT FPOUTIMES
JSH TO R BANK SELECTRABLE ROM

LAST EWNTRY IM ROM THBLE

RE-SELECT ROM C ANDO RETURH

BASE OF -ROM TARABLE

“RPLOT" STRTEMEMT

EAMK SELECTHELE FOM SEZLECTIOH ADORESS
RESTORE REGISTERS

OO A CHECKSUM OM BX OF MEMOR:T

MOVE CURSOR RIGHT ON CURRENT SCREEM
MOVE CURSOR RIGHT IN BLPHA MEFMORY
TOF OF GOSUB RETURN =TBEE

FUM LIGHT I»0 ADIRESS

FOR SAVIMNG R10-11 DOURIMG IMTERRUFT SW(
SET CRT HLPHA STRART RDIORESS

ODISKE BRIL OUT STACK POCIMTER FOR ERRFRORS
SYSTEM MOMITOR REGISTER SAVE ARER

8-9

Section 8:

N

4360
4370
45980
4930
5000
5010
5020
5030
5040
5050
S0B0
S5070
5080
5080
5100
5110
5420
5130
3140
5150
S1EBQ
5170
5180
5130
5200
5210
8220
5230
5240
85250
S5Z280
5270
5280
5280
5300
5310
5320
5330
5340
5350
53B0
5370
S380
5330
S400
5410
S4920
5430
5440
5450
S4E0
5470

g§-18

ame

SAVRIO
SAVREG
SC104+1
SCAN
SCHM+
SCRAT.
SCROM
SCRURP
SCTEMP
SEC1D
SEMICS
SEMIC.
SEQND
SEQNO+
SERPOL
SETZ40
SGNS
SINTD
SKYTH®T
SPRRO
SPAR1
SFECLF
SPTR1
SPTRZ
SORS
STZ240+
STRCK
STEEEF
STOST
STOSY
STRANG
STRCON
STREX+
STRE =P
STRREEF
STSIZE
SUB10
SUBROI
SYCWRD
SYSDIS
TAN1O
TIME
TIME.
TOS
TWOE
THOR
THOROI
UHBRST
UHBRSZ
UMEQS .
UMEQ,
UMHauaT

Reference Material

hddress

ORD
0OA/D
OAD
ORD
ORI
0RO
nAD
ORD
0RO
0RO
ORTD
ODRD
OAD
DRDO
DRD
DRD
DRD
DRD
DRD
DRD
DRD
DRD
DRO
DRD
DRD
DRD
ORD
DRD
ORD
DRD
0RO
fag]al
ORD
0RO
0AD
ORD
ORD
0RD
ORD
OAD
OAD
ORD
ORD
ORD
0AD
CRD
CFD
CRD
DHD
CRD
0RO
oAD

124083
22310
177540
21110
21165
5601
1381
13736
101721
54280
72155
TE2274
J0428
0422
177423
210
54202
54343
T0BB1O
104011
104022
103527
103300
103303
53237
Z210E7
102070
10441
qB47 2
46057
103715
2az2o1
ZITEN
23724
Z405E
1901741
52734
SEVE4
100162
177707
543E3
101123
BEZ11
101744
SETEO
57020
57050
103430
103434
AB03
BZE3Z
Z43EE

Description

R10, SAVE FOR PARSE ERRORS

SAVE REGISTERS OM RE

I-0 CRARD STUFF

GET HWEXT TOKEW TO Ri4 AT PRARSE TIME
GCHAR AMD SCAM

"SCRATCH" RUNTIME CODE

SCROLL DOWM THE CRT

SCROLL WR THE CRT

S.C. TEMP STORE

SECANT RUNTIME CODE

PRINT STRING;

PRINT NUMBER

FARSE A LIME HNUMBER

PARSE A LIWE HUMBER

My LISTEN RDORESS

SET THE IMMEDIRTE BRERK BITS IN =17
M FUNCTION

SIM FUNCTION

CALC SOFTKEYS TEXT (14%30)

SPARE IWNTERRUFT RERAM HOOK (575 MONITOR?
SPARE INTERRUFT RAM HOOK (UMUSED?
DISC VOLUME MNRME

SYSTEM MOWITOR SHVYE PTR1 ARER

S5YSTEM MONITOR SAYE PTRZ AREA

SOURRE ROOT FUWCTIONW

CLERR R1'E ANMD SETZ40

RE STRCK S00Q ODCTAL BYTES (3£0 DECIMAL2
STANDARD BEEF

STORE STRING ROUTIME

STORE SIMPLE YARIABLE

STRANGE FREEMETER - TYPES INTERCEFPT HOOK
PARSE A STRIMG CONSTAWT

SCANM ANDO PARSE A STRIMG EXPRESSIONM
PARSE A STRING EXFPRESSION

FARSE A STRIMG YHRIABLE REFEREMCE
STATEMENT SIZE PLACE HOLDER POINTER
SUBTRACT TWO REBL HUMBERS IM R40 AWD R3O
SUBTRACT 2 REAL OR INTEGERS OM STRCK
SERVICE WORD

505 CARD ROM DISHABELE ADDRESS

TAMGENT FUMCTIOM

TIME OF DAY

TIME OF DRY FUNMCTION

TOR R1Z STHK

GET TWQ BINARY HUMBERS OFF STARCK

GET 2 REAL MUMBERS OFF R1Z STRCHK

GET 2 REAL OR IWNTEGERS OFF R12 STARCK
UNUSED ROM STOLEN RAM BASE AOCRESS
UHUSED ROM STOLEW REAM HASE HODRESS
COMPARE STRINGS FOR UMEQUAL

COMPARE WUMBERS FOR UWEQUAL

FARSE AN UNQUOTED STRING

Section 8: Reference Material

8.3 System Operation and Routines -

This section provides documentation for certain areas of system
operation. It also shows the input conditions required and the outputs
produced by selected system routines. The names and addresses of the
system routines detailed here are also on the disc.

The system routines are arranged in alphabetical order. Their area of
primary use 1s noted. Because a routine 1is listed under a certain
application dpes not limit its use to that area. For example, many
utility routines may also be used during run time operations.

8~-11

Section B: Reference Material

The format of the individual system routines is shown here:

B [T [2 |2 |4 |5 |6 [7
i@[i1]iz]13[14]15][16[L7
2B |cllZ22l2 3| 24]75]26]2 7
36|21 |=22|23|24|25]26|37
(:) d@(dl]4z[42[4a]45[26[47
EB|5l|o2|53|54|55]56]57
GRlElle2[63|64[E5[66[E7
rBlrilre|r3|r4lrslFalry
OR[AR[DC 5 RIFTRE
3 o Y S N |
A. Name: Name of the routine (from the global file).
B. Address: Permanent octal address of the routine in computer memory.
C. ROM$: The ROM that must be selected if this routine needs to be
called through ROMJSE.
D. ROM #: The "¥" or "N" entry indicates if this routine needs to
to be called through ROMJSE.
E. Hegisters: Shaded areas indicate registers used by this routine.
F. DR,AR,DC,E;S5T,PTR1,PTR2: Entries in these boxes indicate exit

8-12

conditions of this routine. The following symbols are used:

Symbol Meaning

- Unchanged.
Unknown.
Refer to the descriptien (G).

*

Section 8: Heference Material

G. Conditions: When applicable, shows input and output stack ceontents,
and output register contents.

H. Description: Contains description of routine.

Section 8:

ABES
MATH

ADDROT
MATH

Reference Material

Hama
Addreszs INFUT STRCYE CONTENTS
Eom #
ftystem function Thar o Argusent (2-bdrssd
returns. the absolute Fla-—---
value of 2 nuambier .
{Fafer 1o thda sustel OUTRPUT STRCK COHNTEHMNTS
funmnctian AES in tha
T manual, : Absolurte waluae of argument (T-hutes
.3 g
A e I < - GUTRUT REGISTER CONTENTS
Tilia|y 158 . ~
=1[z e g L Edb-F47 = Dopu of absolute walue,
F1[33]3 i = . .
a1] 2 4 FeaR=F&yT = [Ul Braarnal cargument
- valuea
3
ROD1
53n3iaq INFUT REGISTER CONTENTS
2 it}
Adds tuwo s E4B=-pa? = Real value A (B-Bytesz)
trimating-pornt ESB-F5) = Feal valug B (E-buytes)
nusbers ~
DUTEUT STACE CONTENTS
Faszul1 A+H (S-buytes i
Pl a———=
CUTFUT BEEGTISTEF CONTEHNTS
| |
T T3 = BE4D-FR47 = Copu of result A+B
101 1215114015
cilzrlz2l23le4]2s
N E ITE
_:I HOTE The twa numbers must be 10
= flosting-painl format snd the CPU &must
Lbe in PLD mods when ADOID iz called
Bl ar the resulr will be 1ncorrect
DRIAF]
48311
Name TRODEOT
Addrass 52745 IMNFUT STACE CORTEMNTS
Rom # o [ETWErE |
Adds tuwa resl or Feal or tagged-1inmnrteger A «BE-butaes
tagged-tntager . Feal or tagged-integer B (E-buates
numbsr Rl2--—-
£Thi the main . =
run Tl Roint BUTFUT 2TRCK CONTENTS
For tEm -
GEEr 1 Fezult A+B (B-buias)
Ri2——=-)
AUTFUT FPELTISTER CONTEMTS
FAd=F47 = Copy of The resuli
HNOTE The resul® maw be sfthar 3 resl
or & taggaed-integer number , The CFL
mus1 be 1n BOD wmode before callina
AOOFD]

Section 8:

Reference Material

Hama ALFR
ddress IHFUT COMDITIONS =
Romis PHRbE
Cheeks the charscter F2o = Tha character
in BE28 rao- =ae 10 jt'=s = e =
bervesn 'RY and. M2 OUTRLT COROIYTIONS
ar "a' and Yz'. If . .
iv's lewer case. 11's R20 The character {(shifréd te upper
shitfted to upper caze 11 11 kg Tower casel
case
E =8 1¥ 11 waz net an alphs cfaracter
E = 1 1¢ w3z an zlpha character
8 |1 Jg [3 14 |5 |6 [F
1 A E N R
ECT N Y s
a3 J2 |3 FH]IS |FE
dAs1[4z[33 4 45 |an
tSefsl 52 | 5254 (55|85
Eoleileolesleales]es
|I_._'_|-7_’I_T'1 Feld3lF |
OR[AR[OC] E 1
Zelule 14 | [.
Hame ALF AL, | ALFAL.
Addraess e QUTPUT CORDITIONS
Rom & & : CRT
Forees ALPHA ALL mode The CRT will e In ALFHA ALL mode
on tha LFT The actual pode For ALFAL. 12
FMLFHL ETH
LOED B3R . =CRTETS IGET CRT STHIUE
LLE RZ8 I GRAFH-GEAPHALL®™
ELE F38 [
ERE F 0 i
JCY O ALFALL I f1F TE®
NG ARTH | JIF ALFHA RL]
RLFALE J3E CRTUFD VELANE CRET
LOE R3IQ,=10R IGET "ALL' BARSY
LOED EZ] ,=CRETESTS IGEY STRTUL
AR K21 i R ' TRASH GRFAPH EBLIT
OFE RFZ21.B30 toak TH AL ETT
STERD BEZF =CRETETSE 1SET CRY STATUS
LON RIc,=388, 77 {LEORAD 37780
STHD =26 ,=ASILE LSET ALPHA SIIE
JER L) CLERAR HEMNDRY
|5 E VAUTFUT CLESOE
LITE] UHWELANY CFT
CHLF MR ALFPHA
12413 OQUTPUT CONDRITIOHRS ,E
Ml <on i =b L _ CRT
3 e CRT 12 Tha | The CET displag will Be 1k ALPFHR NORHAL
ALFHA MOPHAL waode]r|
it w3z inm BLFPHA RALL The CRET memory will have been 1nitislized
or GEAFH ALL wode., | and top of =iachk =Zer equal te P1Z2=-8]173
rhen the CET mefpru if 1he ‘digeplay was tn ALPHA ALL or
t= inmitializeo by LRAPH ALL wods at entry
calling CRTINT

== (1]
sl

Gl G G Gl b L

2
A
Z
2
2

il ~d i LN Pl

Section 8: Heference Material

ALP " OQUTFLUT CONDITIONS
il . [i S
CRT j .
the CRT displaw is If the TRT is in ALFPHA HORMNAL mode &t
CREEN MEENEL T ae entry, 1t dill be in ALPHA NORHAL mode
entry, 1t will be 31 exlT 1t the CRT 1= 1n ALFHA ALL wmode
zuitched 1o RLFPHA al entry 1 will be ir ALPHA ALL modsa
HOFHAL made, eleoe R SRR 17 tha CRT 1= in GRAPH HORHAL
nothing will be done. wode at entru, it will be in ALFHA
- HNOBHAL mode &t exat, If 1he CET 15 &n
GEAPH ALL: mode at sanirg, 1t will ba in
GFAFH ALL modéa w1 dwatr DR retuarn
addpress will alszo be rthrown away before
= = = returning 1F i1 waz 1n GEAPH ALL mode,
j' i 'I_ so L1 woH 'Y Feturn to the eslling
L P routing
|20 31 5 2637
| 40 4647
i o2 SE|[ST
i [=F [N =S
Fii= =1 il
I[FIRZ
=1 —
AS51IG.
IHPUT STRCEK CONTENTS
DISC
Buffer numbsr (8 butes)
File name lengih 2 buytesy
File name address 3 butes!?
Rl2——==
QUTPUT STACK CONTENTS
{ Eap 1y
Rig——==
2 SN
IEES 1 4
2821 22:23 24
38 31 32 33 34
48 41 42 43 44
28 31 32 533 54
B 81 52 83 64
a7l 72 Td
ATHNZ. B
5 INFLT STACKE CON HTS
MATH
valua <8 bytaesd
valua (8 butes)
sgroctangant o3 - | r
1he proper fuadrani TACK CONTENTE
XF LB butesd

=0 {7y L0 5 (Y[R P
it

50 £ 0 e e [

1
1
I
i

mE

=ln

8-16

Section H:

Reference Material

) BEEP.
[HFUT CONDITIAQNS
¥ MISC.,
Runtime code foar the Top of FiZ2 are compared 1o =ee
BEFEEF statement, LF thare optional caramstars on
the ELZ If pore, Then a JIE 33
made 1o
BEEF A.B would make 1he srack loak libe
rhias
A L8 butas)
B {8 Bgrez)
= — = X e S
= 4 b}
1213141
Zal2d|=d]2
32 34 3
42 44 4
5= 54 5
&2 64 &
Te 4 7
& (i
| :
= BESPC
THRUT CONDITIONS CRT
The TFU must be 1n BIN mode a1 niry
CRTEBEYT must cantatm the zama address as
tha ©RT conirollers butse address
regilster (CRTBRAO:
Tha cursor must be of f 31 2ntry s wall
mus1T have besn mada ta DECURZN
H'a 1= 1= & |7
i 115213 1 17
ol R EE 26|27
5
ELELIN BLELIHN
14165 INFUT CONDITIONS
Gl - on st [CRT
Fill=s from curreni The CRT buie addreoss pointer (CRTERDO)
CET butas addressz to must be polnTing 1Te The address where
ithe &nd af the blanking 15 Yo start,
with carrisaes " . :
charag 1=1-'.\-r“_==| 15 by GUTPUT COKROITIONS
Alters CRTEBYT,leaving The CRET bure address poanter will be
bt opointina te ihe = eointing to the fFirst sharacter of the
gtart ‘of iHe ne=xt et lime.
L
5 The actual code For BLELTH i1
BLELIN BEIN
JSE =COLUNN
DB R3Z.=15%
LE JSE =QUTCHI
ICE R&c
CHE R&6. =880
JHZ L8
"TH

8-17

Section B:

BPINI
MISC,

BYTCRT
CRT

CEIL1®
MATH

Reference Material

Hame
Addrass [HPUT CONDITIOMNE
Rao
al FOMFL = Reaszon {for the call!
mou 1 = | .
|the binzary progarams B FPower an
PFresent 1n memary, 1 EEEE'l
2 Scrateh
3 Loadbin
4 Run, lnin
5 Load
& Sipp,Pause
T Chain
a 't Aliacate clas
11l ODe-allocais <
E.g _EE |2 Deg=-compile clas
- oo T H 4
30 3% 13 Proaram hali
g::: ﬁE HUTE: EBindryg prograss must anzure 1hat EBFQ
za éé do=s not age: destrousd during their IHIT
;E1 = Foulifne a2 R& 13 wzed by BPINI az a
S = caguniter of which binary Prograte 13 nexd
Mama EYTCRET
Address 14dEs [HNPLUT FELISTER CONTEMTS
Rom # _ ¢ [T
Cets bhe bute addFe Tl r'L'EI.:Ei_'I' BFail Polrte the
in CPRTEBEYT and =zends ODREF must contain tThs be
et v ot he CRT tared ta CETEYT amd
caontreller CCRTERD
LT The actual code 131
E¥TLCRT TN E#.=CRTENT
5AD
JEE =LHESTS
FAD
i i — STHD F#.=CETEAD
e ETH
1213 1]
i F3nd |
32|33 34
|43 (47
o = |
2 [
TR 2]
INFUT STRACK CONTENTS
Rom 8
IFunt1ime cnde For 1he . d-walue (B-buytes
lsusrewn tuncrian CEIL F1z----
|Feturs tha malloszt QUTPUT STACK COHTENTS
imrzasr = i
T | CETLI(XY result ¢E-byies)
Rl1E----
QUTFUT FEGISTER CONTENTS
¥ PAR-F&7 Copg. af rezulrt

Ty Ol S e

Y O L B Ld L

[~

Section 8: Reference Material

CHKSTS

This = tha actual code for CHESTS:
o) < CRT
Halt CHKSTS BIN
SIE OEF R3O0
by sy - BUSY LOBO--PR;=CRTETS IGET L
Faiur e 1 10D BLSY LOGF
Srate : T4 RTH FELSE
CRTD
Thiz routlline t=s useful uhan vou want! 1o
store diregtly to CRTEBAD and or CRTDEAT
tswuwch as when dolng khiagh d araphtes
er alephs displagsh,
1 2 i} E] 5
11[EZ2] 1401403 "
2l 222324 |25
L] AZFIITI3IH |35
4l |4z2}43143]45
51|53 |5[5T
o S A
Tl 73|74l 7S
(=]

CHEROI
IHPUT STRCK CONTERTS MATH

Feal or taggad-integs: CB-bytias)

OUTPUT STACE CONFTERTS

Feal or tagged-integer (B-bButesh
F SR
The actual code 313
CHEROT POID 40, -F1Z

— CHE R4, =377
b ICY CHEior
L_::"_] T5h R48
= JIR CHSL1
24 LLE Fai
HEE R4l [
) ERE .Ral
(=1 CHELS FURND Fa40,+R12
Il © ETH
TE CHE 1@ TEN 4%
ENY HE CH211

Hama CLE i CLEAR.
Addr lazz This 1= the runiime entru point Ffor tha ;
¢ [ETFETE BASIC reserved word CLEAR CRT

same Thing
LEAR =tztemeni
It

L]

1 [[F [+ 15 Is I7F
[] fali3]ltalls L7
ENIEEIFEE] -1 25 EEE
21 32 33 34 35 36 37
ikl | A s (a3l4ai45i4a 47
0515253 |54]|55156]aT
EO|El |G |Exlaa]as
Yo cl|i2le3liales
L:I__F: EI_F_' [F_i_'?,lF‘TFlF'TP:‘
#1] w8 [=] UF — =

g-19

Section 8: Reference Material

CLREOL [CLFEOL
v Addr L3447 [NFUT CONDITIONS
CRT Rom o [ETEETH: |
Clears 1o the end of CRTEBYT Current ALFHA cursor localtton.
the current HLFHAR y
tne b d upen fhe |
C TEnt af CRTEYT
¥ leaves CETEYT
nring 'o where 11
......... T
3
[Z=]
3
K]
=
K
CHNTHTR =
CRT Thi rouwtine can be used whean delaus of

des d ¢in steps of multriples of 185.&67

{5 é?’ milliseceonds to 4,27V seconds are
1Lre

FT raltrace nilllisecondst. The CRT oontroller Talreshés
LR

Coumts a =specilfled
C

numboer ol

lpar1ods the I. 6@ times 3 zecoend, That means
there 15 & retrace period everd 1788 of
a second or evary [E.&67 millisecends.
Thes routing simply couwunts the number of
retrace periods sepecified when it a7
called,

INFUT REGTSTER CTONTENTS

— = e E3R = Number of reélFrasoes t'o be codnted
3 14 2 = Fy

21131ia IS e 7] GUTRUT REGTISTER CONTENTS

Sl2|I4 |25 |26 [27 B2 = 0

HEEIELREREIIER

S e e NOTE: The CPU must ba in BIN mode befors

e it thts routine 15 callad

2led i =

Z3:.53 =t ==t RE8 1= & ocne-byre countl, thuas lislting

N FTE1 the count fto 236 (IF R3I® 15 @ a1 enirw

! CHTIETE witlil caunl for 2356 reirasces. §

COLUMN
CRT

IKELUT CORDITIONS

Caleulares 1He colunm CRETBYT mu=st contain the current cursor
rumber of the current Fdorcaas,
curzor locatian on
ALFTM Aizplag. 1 is OUTPUT REGISTEE CONTENTS
returnaed as a numbar B =
batwaesn 0 :ln'.f 1.I!._ RE6~-RE7 = Column numbar £B=-1]7?
Coectall, RAB-R?? = 128 {oetaly
HOTES
The CPU must be in BIN mode at entry,

] 1 = = q—-._-.—-t._ The avtiual codes |=

=y] =]
4%hLT.§ o A COLUNN LPH FTE.=L29,9 CLINE LEN=&R
eI ER R ER R T TSR LOMD 66, =CRTEYT CURSOR ROOF
Tl gl raaratas ARF Eip "ERYE CYLLES
e B R B o noo Sen BH R FESUBTRACT UHTIL

=] £ e E #
e T e JgY oD ' B

[Geledle 5 AOH BH_FN FARKE FOSTTIVE
=T FETH 'ODDONE
[TR i

Section 8:

PRINT

]
=
— [}
o

s

=0 O O B L D
LB f e Bum o)
=) I G o
[l ol S Y

8~ O L Gl

Reference Material

the sran
bBuf{fsr

PRINT

COMMAS
PRINT

= T LA e e
o) sl €A G e el

A
I

F
t

Cq 12
i 1518
R EE FEomisbh N

INPUT STACK COMTEHNTS
Lemgth &f strinag 2 bButes]
Address of =iraing (3 butes=)
RiZ2-—==3 »
"REBL™ OUTPUT STACKE CONTENTS
(&mp Tl
7 I
= MOFE: DISF. or PEITHT. mus=1 be called
m% prior to calling COMNMAS to set up the
- 24 2 sefect code and buiffer pointers),
33 34 3
43 44 4
23 94 9
B3 B4 &
Fr3- 74 T
ST [P
ITHFUT STHCK CONTEMTS
i
A n 10 Number 10 be primnted (8 Durles)
t or display Feligi=)
Same asi
T GUTPUT STACK CONTENTS
Camptauyl
Rl B=—=
NOTE: O1%F, or PRINT mus1 be ecalledg
prior fto callinmg COMMA, to set up the
seglect gode snd Buffer poantatz.

Z3-b1v
[SRRE 1=0-T4

[=N=R-N 2 R

1| o (L] o]

T

o [k

I [||
— |

[NFUT FEGISTER CONTENTS
Fa% -k t siwnad, binart
=1 zianlfiesft Ba
ude (@ TO 2 23-1
Farcant L1 17 1The
2 and 1=neasviyvel
S3EReODT TO +872

OUTPUT ONTENTS

FELGILSTEER: C

Fadix-Fa7 = The equiwvalesnt floatin

W lile,

X

et L v R

: COMMA .
| PRINT

CONBI3
MATH

Section B8:

Reference Material

CUONEIN [T TOHETH
4401 IHFUT FEGISTEE TCONTENTES
MATH o [ETYErE)
= = 15—kt REI&-R3IT -bit zi1gned binary tumber,
Binary number Th leasy significant bits are
e B S = L) th an1tud y2FY e and the
[03=} sansfi k 1The =
w1 Trlwe 3 L vt g
3 rands of B :
OUTFUT RELI=TER CONTENTS
Ead=RE47 The squivalent {lostina-poilnt
o li1 12 |3 |3 value
Ta[1 Tz 131
LA P B R T
=1 IR
sa|s1|s52|53[5
eVl 62636
ol Nl R R
LR AR
] 1]
CONCA. TR
MISO THFUT STAHCK CONTENTS
L T o
COfcarenyta P A3 Leanath (2)
AP s A% Addres=s i3]
: B3 Lenath (3)
BEY Address 3 i
Rt g
QUTFLUT STACKE COHTEHNTS
A% & BF¥ Lanagth Ly
A¥ 4 BFf Rddress (3
- RAprme
[S
16
L
36
45
56
55
TE
CONLNY INFUT REGISTER CONTEMNTS
HEPL REG H HTS
MATH
Converts a floatina- REQ-RET = Floasrting=point value
point wvalue 19 a
LE-bi1 unsigned walue OUTPUT REGISTER CONTENTS
vith & dxparats s ian i i
flaa, EF&=-FE77 = 16-bi1t unsianed birary value
R332 = Elan of value
[R3I2=0 then wvalue 15 positive
[T RIZHD r1hen w i® negative
-.L'I | NOTE: Thi=z routine doasn't chack fa
R insure that RF6B-FET7 contalnzs a floating
3'‘ 3:; Polns nDumbar, Fo 17 17 contains a
EEl =4 taaged-1nteder or ame Sther garbsge
= Wou'll aet indetarminate results,
4Z[42[a5]35] ’
53 54 c
3 E4 COMINT d:,-e:le. SRO at entry and a FARLO at
= S exit, s9 a4l =tatus 15 preserved fTnot
...... [78[75] including 1he E reglsterd.
EIBT

Bg-22

Section 8:

Reference Material

CONTE, CONTR.
nisz20 INPUT STHCOE COMTEMNTS
MISC.
IPuntihe code For ths -0 card number & butss)
SET 170 =tatemeant., Fegistaer number CE Bytes?
Contril walus T8 buteso
Refd=—r
QUTPUT STACY CONTENTS
mp
RIZ——sr
1
NIEIENN f
£l 21 &
3l 11
41 &
51 5
51 [
E
Ir
cosld
IHPUT STHLE OHTENTSE
g MATH
Feturns the COSCX) valu {EB-hutes’
Ryg-—
OUTPUT STRCK CONTENTS
COE roowalga {E-butes)
Fli---—:
] IEN
HEl 14
28 = d
) Z4
48 44
58 54
[=11] =]
Fl-] 74
LE[H 5T
ET] :
] COT1PR
THPUT STACK CONTENTS MATH
Rt 3 the EOTEH D I walue Baagt s s 3
P F BB =
colangant? DUTPUT STARCK COHNTENTS
(T vl ua CH=ly 1
RE&====

Section 8:

COUNTE
MISC.

CRT.
CHT

CRTBLK
CRT

Reference Material

COUKRTE
14301 If & ked is not pressed at entrd or LF
ﬂ_m it i3 ralsased before the vad repeat wait
U=zed for rapsating 18 done: then a call is wade 10 EOJdE2, el=e
ke s the keg repeat =zpaesd is forced to KRPETZ
and the sarvice requesi ¥1lags arae =zet! in
EL? and SYCLHRD.
& 7
16| 1¥
2E|27
26|37
L
SE[57
B |67
Telsv]
Hame CRET. -
Addrass ITNFPUT STACE CONTENTS
Eom # i
Ferfarms the CRT LS 1 Top of stack-2 Select code (B=bytes)
s1atsment ., Opripnal line lenath (B-bytes)
FlZ-—=—=1
GUTPUT STRACE CONTENTS
e 1
et t |
L CRIBL? L =
Addre=ss 3 DUTFUOT CONDITIONS
Eam #
Fills a1l af ALPHA The CRT will be 1n the blanked-oul mode
memard with casrriage Cethat s CRTUNU will have to be called
return charactars after CRETEBLE)
toctal bS5, %
E32 15
RIE-RIT = @

Section 8:; Reference Material

m OQUTPUT CONDITIONS CRTINT
g])
: o CRT
Initializes RIGE-FIT = 0
memary 1a
HORHAL mode with 311 The top of =tack will have 1o bz zet
of ALPFHAR snd GRAFPH squal to R1L2=R13, Hau GFAFH parameters
memary cleared will be el to the default wvalues
The CRT start address (CRTSADY and the
CET bute address <CRTSARPY will be z&71
1o B
CRTPOF
The pode For CRTPOF L= CRT
CRTPOF LOB F20.=¢
BEIN
5B =RETEHLI
ad g LOEBED FH,.=CERTLTE
thest ORE FN,FZ0
STED F#.=CRT2TS
naad FETH
came
CRTPUP
The code for CETRUPRP 1= CRT
CRETFUR 1.=CFTSTS
[.=CFTS1S
E . =37
J5E =CNTRTE
JHMF CRETUHNU
The CFU muszr be am BTH mode a2t envrwy

I P e
jenjonboajonlos

Section 8: Beference Material

CRTUNW
CRT

The CET wad need to be blanked for two

Freagdnfnsi

diselzy. A ' T b Iy 1fF ;phe ERT controller deogsn't need to

— T X
electran baszm be refreshing the dlsplay, the CRI
atiti 1ol memary £3n be zocezsed much mors
gquickly thanm during refreshing,

L]
Urn=-Blanlks the CET

LA |

=B-1

2y Hnen =witching CRET modes wuely flashes
can ‘ba seen if the CRT is not blanked
first

Mie actual code (or CETUNHE b=

Lt e CETHHH JSE =RETEHI
" Aot LOBD ke, =CRTETE
] L) o2 AHN. BH. =371
e i e STED Fe,=CRETETS
Bk 4545 FTH

S EEA TS

&2 (=1

] Th

B

CRTWED
The LCRET mag nesd o be blanked ©or g
CHIP reasons:

1v I+ the TRT controller doesn'? ne
bea refreshing the disgFlaw, tha €
mMEmITy oan be acocessed much ware
quickly than durine refreshing.

2% Hhern zwuitghing CET modes ugly Mlashes
camn be zaen 1f the CFT 15 notv blamked

d to
T

K=

firgt,
The actual code for CRETHFO Qs

O i] 5 |16 |7 i ; s

O THENE IS HElT CRTHPG LB g30,=2

a a = = B i

0 R b e FEEE e e el Bin =

: S IELIE IR e e JEB =RETRHI
TG|all4-]4 AT I LIEBD Fe,=CRTSTS
s L T P OFE B# P20
ECI R R R R SR T e S)
EO Bl 62 IE3lEAlEn]|6E]6T FTH s
TR|rl|relr3|7alroltelir
DR ARTOCT E 15T [

Fil=0le | - [0]

CSEC18

THRUT STRCK COMTENTS
MATH

CSLLE) % ovelue {EBE-byrez
R12=-==3

Returns th

Lcosedant) QUTPUT STACK CONTENTS

CECLAD walue (B=-bytes)
Bl 2==—=3

Section 8: Reference Material

IMFUT STACE CONTEHNT CSIZE.
IMNFL 5Th CONTEHTS

' CRT
Furntime LS1IE value <2 bytes
EASIC =tartement RElE2-——-

CR1IE ¥ OUTPUT STACKE CONTENTS

Cemir gl

Rlg----

1
N

d 0 LN o G)
o e B b e B

b G LY B ad T
s s e
= T LA

W T 0 P T

CURS
CRT

INFUT CONDITIONS

Butputls a cursar at CRTEYT and CETEAD mu=zi point to the
the curremnt CRTEBYT location at which the cursor is 1o be
laeption, [=TH R B O

HATE: The cursor is created b atting
the most gaignhntfreant bBi11 o
charactar at the cursor loc
Caums s thaty character to b
or =hown In 1nverse video.
charactaer st that locatiaon
1 1te HSEH w1, then fthe bBit 1
] CECURZ does just 1the apposi
way the cursor i not desir
= throuwugh ihverge vidaono
= 15 a fFlag CCURSONY uh
and DECURZ f the curs
o that 1he E af 1he c
be erroneo

V1=
g,

o |

i
54
[

T4

J| LA
n
A g
T

g (]

“l| |l s

— e

WX

STIFIRI[FTRZ| made,
[ul - T -1

Sy weE Rl

14 CURS or

IHFPUT REGISTER CONTEHTS CVNUM
isb R PRINT

Formats a §loating- FFg=REIl = Pointer fo output bufier
potnaY rumber into B40-F47 = Flaostimnga-point Aumber 16 b
AECII chsractars far formatred 1ntoc cutput butdar
pramtine or displayu-

Lri

OUTFUT FEGISTER COHNTENTS

RFIO-P¥l = Pointer to next ayailable bute
i 'he o) gEdl Bak far

Em
Em
im

L]

2
3
4
=
&

=& T LA Bl D)
S LN B G P

| [ERTE AT

B [P I T T D)

a
%
a
]
2
a
E
I.

8-27

Section 8:

Reference Material

DALLOC d
3 LHPUT COHRODITIONS
MISC. Romn
Tetzslly de-zllocsras FEla mugt be even, I+ i1 iz odd, DALLOL
tha - e bFran BASIT will return withour doina anything,
Broar I .
]
1la 15
=] 23
38 35
4@ 45
58 a5
&8 55
78 73
DATE . Hamd DATE
= A 3zar3 DUTFUT REGISTER CONTEMTS
MISC. A ¢ [FTRETHE Y |
Feturns the ODATE: RAB-=RAF = Copy of dale
DUTPUT "STACK CONTENTS
The datrs (8 butesi
BlZ—=——=0
HOTE: DATE will alwaus rsturn as a
Tagaed inteaes
DCLINY C[FID LinA
Rddr i IHPUT COHDITIONS
PRINT ¥ ‘
Dacomptles & BASIC REid=F3] = Feinter to output buffer
Prograt liné Humber, ERES-R&T = Line number as 5 BCD digits
QUTFUT CONDITIONS
FRid=R3]1 = Pointer to output buffer
farfter tha lina number was
pushed out as ASCLI
oharacters).

|

| LT = 1T

B-28

Section H: Reference Material

INFUT

string of
the lower
fpacs,

The

Ledl P =] 8

st U | R Y1 e Cod D
LR e | R | DB | (N T

= d | LAfd-
S || F N N S PN I
- [) S O A

Ll onfonforen| oo

P s idmi s
R3IB-K2I1l =
Ry e—-R7T7 -&

FTEZ Firgt

soruwal oo

BCSLOP

CONOITIONS

CPU |3
First
Humbear

in BIN mnode =

Bute =ink 41
of butes 14

Buwle 4] of

I oentrad,

dwres b

mows

source

thighest e

LHFLT

[
Erases the ou at CRT
the current C
aatio

Togaticon, WoT
tho
cha
ocau
or

chz
its
DELC
Wy
i

The
CUR
or

ot
cal

Fal—[Fut
Tl

CONDITIONS

BYT and CRTEAD musi
location of

POt
the curszor.
Et The <¢ursor 1= oreated b
most significant bt of t
racter AT (he curzaor lTocar
that character to be h
fFMawn j invarsas Yvideo. [
racier t that laoczvion al
NSE = then the bi7t 1=
URZ do tha
the © [RE=N ¢
Mowes nverse Yida
re is CCUREONY whiw
% and DECURZ 14 the cursor
so that ths HSBE of the cha
e erfranecuzly foggaled of
l= to CURS and DECURZ are

a5

]
a
T
5
r destruc
3}

e

orFRosl ta,

9 the

0 o=et
b
100 This=
ighliahted,
f the
resdy has
cleared,
In this
TEva when
o fields
W o 1alls
L already
racter will
TudcETEZIVE
made

N E=]

oauTe
kZ

Tha

-i"ﬂ

G () o Bl 1

GE

81 ghl
[ast el

LEsd

OE
ET

frnfds

af=af-af-d-

-
x|
15 34 (R4 4] N g o

f | (=B | B2 [P [5

[}]

et | Lt ON | B 2
i T T | T

-

EJSTIFTRIFTIRZ
= ENE= =

| | M|

E\] (e (o8 CR 8 PO S

Ayl
I

UT FREGESTER CONTENTS

£ L

sctual

FR+ CLB RE36

FA
OROF

DCELOP
MIEC.

DECURZ
CRT

DEFA+.
MATH

8-29

Section

DEFA—.
MATH

DEG.
MATH

DEGLP
MATH

81 Reference Material

DEFA-

S8 A
Turns 1he Systam
math defaulrs airf,

Alinjfon

ot Ee] PGB 2 [N 80 o T

Al

i =

QUTPUT REGISTER 'CONTEWTS

R3&

= B

Digla

59734 IMPUT STHCK CONTENTS
0 e
Funtime code faor the . Fadian-valuse tB-butes"’
gugtemwm Function RBRTD B2
Convert=z radianz to OUTFLT STACK CONTEMTS
degrees,
Degraas resul1 (TB-bures
B2 ————
DUTFLUY HEGISTER COMTEMNTE
o B 5 18 = 4 =47 Capy of recult
] T IS = O
26 24125126l
i 34 35 36 3
48 44 45 46 47
50 5 54 55 56 57
68 & 54 55 66 &7
v 7 74 75 V6
LETAE ET[PTRI|PTRD)
[0] - =

Section 8: Referesnce Material

ENFUT

PR

COHDITIONRS

The character

QUTRUT CONDITIONS

DIGIT
PARSE

DIGF.
CRT

RZ4 = The chargetet
E-=4#8 I 1 &Was- nol 5 digit
E = 1 IE t4 was 3 diogit
G (1 1z I3 14 [5 J&
0 T A S N
FEA SR A P res
ER:R BN]] e
ERT e E R EE rE T
=1 R R N R TS
E i Exled|6d (85|66]
] Te|ra|sd|7S|r6lr
OF E[sTPTRrTR:
[=1 =1 = | = 1
ugad
DfwL 2,
B LT
Ielld
el =
i R i
4
=]
[HFUT STHACE CONTEMNTE
= Y= T
Divides ane Rla=---
number i1nto R o
réest FPumbar [HPUT FEGISTEE COMTENTS
FAR=F47 Eeal mumbier Mo E=fgyr ez
RSR-Fa? = Fezl number B TB-butes)
GUTFLUT = CONTENTS
F ' BExA {B-burtesd
Rig—=
o | OUTFUT FEGIESTER CORNTENTS
?q ?,_. +|.|‘-T.1_ 1 R4l R4T7T = Capa ol ra=zgl:s Lo n
Th T=E128 1 B = 5 :
1 HOTE| The CEY must be an BED mode befare
i :1; DIVvES = called
54 55 T : ; A 2 ;
g Cif he tuo arguments must be real nusmbers
76 = of the rasult will be unkneown,
-

DIV1@
MATH

8-31

Section B:

DMNDCR

PARSE

DHCUR.
CRT

B=-32

Reference Material

IMPUT STACK CONTENTS
Biwvides ane real or Feal or tagasd-integer R (E-butes)
tzaged-intzgser number . Hgal or tasged-integer B (B-buytes)
in'e & £t i Faal o ar 12 &
ragaed-1ntTeaer P _ ¥
n:jl::.:r LEEE OUTRUT STACK CONTEHNTS
“Thai e Tthe maih
rurntime Entry point __ Result RitE: E3-bylas)
far the fustam Flz o
e OUTPUT FEGISTEF CONTEHTE
3= P4B-R47 C r i1
= 1= - T — ooprs 0 TEE
t":\:_l. % - | S} Log- N}
Felall
T - -
E:; ‘E HOTEY The CPU must be tn BIZD mode betors
55 Sg "h1s routine 15 called
6o 66
5
RS .
25175 ENFUT CONDITIONS
IR o s b
arrar 14 F'E4I Fl4 = lnoosling token
marriaae e AT -
o an B EENER GUTPUT CONDLTIONS
14 EI4 dedin"1 £Lontaln 5 CaPriage retidrn
token or am B roken 1hen ERROR wiil have
beern maliad
iz
]
43
53
[RE
[HRFUT CONDITIONS
The TFL must ba 1n BIN mode at sntrw.
CRTEYT nust contain the current Bule
yddr & .
o - The gursar muzt be of 7 atl onlry 16 call
mamory &Rl WEARE 4t 1o DECUERE will do that),
arannd 1§ 1t doss 0
=
12! puUTPUT CONDITIONS
7 CETEYT and CETEHD Will be painving ta
i the new cursolr address
¥
D! The curzoer will =111l be off

Section B: Reference Material

DHOFES DHNCURS
ITHFUT CONDITIONS
CRT
The [FU mu=st b2 in BIN wode a2t &nitrwg.
[T CETEYT mus conTEin the current buyate
chaci iddreass.
= afid
5 The curzor must be orf at ntry a 111
1o DECURZ will do that
OUTFUT CONOLTIONS |
1l 2 ~
19 tl‘[CETEYT and CRIBRD will Be poinfina to
R EE tha mew curszor address
%-—I. -I The ursar will 11011 e ofd
e = = = 1
I_c':E _;-J"::, FE34-F35 = The rnew cur r addraess
fralrils
fm:‘m- [DE i g
R | [-
TER, | DRAW,
(=) THFUT STRACK CONTENTS
Bl Fomish K CRT
Fufit ime code {ar 1he Y=wvalie (8 butes)
BASIL =sratament Fovalue ‘8 byres
pig-——- |
OFEAH =+
Ei QUTEUT STACKE CONTEMTS
[o N CE byt
Rld———-
B 3
28 23 2
28 33
48 43
58 53
58 53
78 73
DRUIZ ’ CRV1Z.
ef2z H &gl te FRIHNT. or DISF, should have Been
performed. before calling DFREWVEZ This will FRINT
PRINT and ODISF autpul fel op SLCTEAF to point 1o elther the
dr i ver Vaotors ihe EFRINTER 15 device or the CRT 15 device
AuUtELEts 14 sithear 1he
JUTSTE routines of Thie
PRORVE routine or thwe
IOTEFC Rmook, bEsed
ypon the walue of the
current. salaect code
in SCTENP

g-33

Section 8:

EMOVEN
MIZC.

EMOVUEP
MISC,

EQJ2
MIGC.

8-34

Hana
ARddra

Reference Material

Howes 1The conmtenlE oF
a block of memorg to
i focation lower
rthan L1 curren?
location, =tarting
With The lowuest
addreszed by124 and
working up to The
niahest
A b (2 [3 J& |5 e [+
bald LE[1F]14§15]16]17
2R X122 2|2 25|26 27
a3 3213313453513
EUIESBEREEIEEY 45 46 47
SRS SE[ST|SAISS|NE]S
AR EAEE i
fElZalrslrel
E 3'?7&% i
-]

INFUT CONDITIODMNEZ

The CFPU must be in BIH wmode at entru

FITR1 Lozt byle of gource [low)
PTRZ " = Lasz1 buyte of =ind (low?
Fa5-847 = Numbar of butes to mowve

DUTPFUT CONDITIONS

FPTR1 = First gpute of source +1 (hig
FTRZ =:First bute of sink +3 (highl
E45-R47 = 10

HOTE: ERODOVUP ana EHNOVON are packwards
from HOUWLUF and ROVOKH Irn wther wvards,
EfOVUF does for sxtended ma2mnory wvhat

WOVON does for

1He lower €4k of wmamory
and ENOVLOH corres=

pabkds o HOWLFP,

b

EnQOVLF
F2231
Romish

Aéwaz the cantents of
a block of memorg to

s location hiaghar

than 1 LS Currant
location., starting
with the khiahazs1
addressed byres and
siorking down to the

| Evara= = 1
16 1 2 13 14 |5-]8 |7V
Lajl I2{1 3113 15f16)1.F
] F EE R FEOER A N
il F2IZ3139 | S5i3R] X7
+814 42143743
SRlsll52|53]59
[N W T T

Al7L|v2|7E[T4

INFUT CONDITIONS

The CFPU must be 1n BIN mode. at entrwa.

FTE1 = First buve of Source +If thighb
PTR2 = First bute of =ink 41 <‘hiah?
E4S-F47 Humbar af butes 1a mava

OUTFUT CONDITIONS

FTR1 = Last bute of source (low
ETREZ = Lazt bute aof simk ©lawd
Ea49=R47 = B

HOTE: ENMOVUEFP and EHOVOHN are backwards
from NOVUER. and ROVON Im other words,
EADUUF doss {for sxtended menord what
nouwoN doss for the lower &40 of memory
and EAOVDN corresponds to AGYVLP.,

EDJZ
14525
o CITFETE
Turns off tThe Ley-
Exard zarvice paglast
LHED erd £
Eryics
L] reopaendinag,
£ ottt rThe Sarwvioe
rgnuest bat in RIT
Al=o resets the bey
rapegt spead to 1he
walue 1n KFEFETH
Bo[Y 2 |3 (4 |5 |& |7
i1 1 (A T N
colFt ez 23| E4]25
IS 32 33 EENE
3 A EEIEE L
= E2l53|54 165
£ SIETLRALES
f o i Wil
5 a

Section B8: Reference Material

FuT THII) R EPSI@
IHFU =1 C CONTENTS
MATH
Feturns the smallegt LunarepNer)
posiiive mumber the RitdE ===z
computer 1= capable v o e s,
of andl ing (IE=4283 QUTFUT STROE CONTENTS
TE=r%T3 E—bytes
EQS5.
INFUT STACKE CONTENTS
: ‘ MATH
Checks Twe s1rings Length of string "A! {2-byutes)
Far equalivy, Address of =tring 'A' (I-hyre=y
Lenatn of strinag "O° (2-butes]
Address of 2tripg "B! 3-byres
y =
e T
QUTRELUT STATE CONTENTE
True-False walue (B-butas
Riz-=—--
T<| OUTPUT REGISTER CONTENTS
27 BP@-R?T = Copy of trugsTalse walue
3.
i HOTE: The trus-false walus = =8 1y
1 Lo false, =1 if trua and is in floating-
& -
point Formal
ED . EQ.
62623 IHPUT STACK COMTENTS
BN Fon =0 K MATH
Tasi1a two numbers for A-wvalue CE=Dygres)
equality, 913__?'_:'31!4": CE-buybEs)
QUTPUT STRACK COHTENTS
TruasFalge walue t8-butesi
RlL2===—
-?.-:, I’l _;? ?1 ':4 E-Ii’_'—_-- NOTE: The truesfalse value will always
'-T'U"J—"'L-;. =5 .;,E o ba a tagaed integer and will be a 1 3F
e it tege-and a 8 F False,
32813 2|33 38 37
4 41 42 43 46
58 5 £ 33 £ =1
£8 & £3 £4 €5 68
i FATa|VE]VE]
8-3

Ln

Section 8: Reference Material

ERRER [HPUT CONDITIONS
iF L L SN
MISC.
EFROR must be called by this format;
JEB =ERROE
BYT error nunber
OUTFUT TONODTTIONS
R17 has bits & and 7 sger,
ERRORES = error numbear
EFHLINE = error faumber adiustoad §ar
edternal FOHS orf bDinary programs
-- R ERROMNE = EFRREON
I:lli_'l }1 i ?_ 3 ? T ll 1 If 1t BUN moda <F1&a273 1hen
R e 2; e e EELIN# = arror line number
;E‘l E} ‘iﬁ == - I{‘i When contrel returns ta tha EXEC loop.
L E i -:‘--.: _]" i these Flszas will ‘cause an error message
TR 1 1o be outpur, ALl registers are saved
581515253 5615 E AR
RN R D 3
Fll=E i1
YR HE
ERROE+ [ELE aF+ o
Address INPUT COMODITIONS
MISC. Rom # H

- S ERROFR+ must be called by thi=z {armat
y Error

lrepaia 3 : 158 =ERROR+

|) BYT error numbsar

OUFPUT CQHDITIONE
RI7 has bits & and 7 et
ERFORE errolf numbar
EfNUMNE = error numbear adiu=szrted for
extarhal EONsS or binard programs
= = - EERONN = ERREOA
e I¥ in FUN mode CRLIE=27 1hen
}_,: 1',"' :5 1s iy EFLINE = error line number
-='.1‘--'_,J' -‘.':-: B Whern control returns to the EXEC loop
2.3 T e 3“ o these Flags will Ccause an Error mescasd
i 43 e Rl te be putput. One RTHN address is
S R R B S discarded from the FS =tack bafare
5 '§i E4lESD E'E §_‘, EFFOFF returns fill registers arwe
B L A W s Wi & MY WA A zaved
ODRTARIOC] E[STIPFTRIFTEZ
] O =1T8] 0] | .
EXPS Hame 3 : =
Address [MPUT STACK COHMTEMNTS
MATH Eom # 3 :
Faturng . & walue (B-buresl
Rl @er—
& CUTPUT STARCK COHTENTS
ExFawd (B-bures)
BlE———
5] 5
T 41
it 4 2
38 4 3
48 4 4
58 4 5
50 2 &
=) 4 7
.T_|,F'

B=36

Section 8: Reference Material

FASTHS - | FESTBS
11565 INFPUT CONDOTITIDNS
a H CRT
Does a fact backzpace Tha EPU must be 1n BIN mode at entry,
LSame 33 if vhe .
bich;pziﬁ key had CETEYT must contaln thse Zams address z:s
bean gpressed while the CRT gontrollers bute address
tha shif1 key was register {CETEHD?
held dowrn. .
FThie curser mus? be of T 31 eatry & call
musi hawe been made vo DECURZ
M BT 17
1 15]16]I7
F 2% HAEN
35 EEN
Ei 5 T
bk [3 d
£5
. -— i
THRPUT CONDITI e
HEL LR LS .
MISC.
lacnta Cijn Assumas the CFU 1= in BIN mode &t 2ntrwy
memorg) a binary RZZ = Tha desiraed bBinarg prodram
Proaram hae<ing a - 3
given Binard proar am QUTEUT COHDITIONRS
number . [f found, e .
EINTAE will be =za1 to REd-F21 = Baze sddres Gaf fhe Binary
1% bazse-address) prog i f found : TErD
aiherwizas, BINTAE BEINTHE = addreas=ss he binary
will Be &1 16 =ar praoaq it found ZEFG
T
i
57
¥
&|7 7 -
.._‘TD_'
=1
FETAVA
EHFUT STACK CONTENTS
Fir to wariable area (3 butes MISC.
Fow trides (2 bytes
an arrad slament Lol trndex Copliconald (2 butresy
{FETeh Prray Wapishle Dim Flag 1 butred
Addreszs RLE====3 .
QUTPUT STRACK CONTENTS
Lasmp twld
Flg—----
AQUTPUT REGTSTER CONTENTS
BE2f-F21 = Max lan 31¥ ring ‘arrag
Ed4s = Header byte of arcawy
: BErd-8ETZ = AL addra of Warlable fameg
' o7FE-B77T - Bb=. adadrs of alamant walue=
PTRZ = Addreszs of elemant value
T3
=5 ROTE A* entry 'Pir te variable area' is
: which 15 relaltive 1o FUCURE.
¢ 12 prezent onluy if the arradg
te twuo dimenzicnal., "Dim flasa” 15 aven 17
the array s two dimensicnal, odd 1f one

8-37

Section B: Refarence Material

FETSWVA
INFUT REGISTER COUNTEMNTS
MISC. -
Simple Yarizstle EES—-R&T Rddress of wariable ares
TaEas an trelative 1o FUCURRD
which 1= v
be FUCLER | OUTPUT RELGESTER CONTENTS
Figas i1 T an N
addres=s, Fig L] dar byte of variabla
RTH-R72 = zddraszs of warlable Fpame
rTREZ : daddrass of Jeast
nifticant bBute of address or
table naws In warisble
Tol 2 TS L E]
P] R N i s
T e PRl
e R) S
42]43,4414% EE:
SZISEIRAISEISE]ST
cf|odilod
i IR I i i
DL ETSTIFTRIFTR A
= EET Y o e
FLIP.
The actual code: far FLIF amg
MISC. i
Run 1ime code for the FLLFP LDE R3G, =200)
BASIL statameant S5TBD R3Ie,.=KEYSTS
FTH
FLIF
a1 & T2 T4
Iaj11j1=]13]14
P L3 i I e
B ERNEE T
: 42147144
R A
E2|E3]|nAd
T2lvalvd
=
FHDLIN
IHPUT REGISTER CONTENTS
MISC.

Finds a specified
lime (bu number? in 3
BRLIC proaram

g 11 2 I3 14 15 I8 |7

Lid} 1 =I5 -3
R ENEEER R EE PR
0|31 |32 3| adla5]156 |37]
dqel41laz2]43]4al45l4ulay
SEI51[52|53|54|55{5&6]57
IR R CEE TN G
'}"g %’1 reledlea :‘:‘5 R
OR{ARJOC] E |ST |='T.=!1|=~'rR2:l
ISl E[B [O] * [-]

E75-R77 = Line number 1o be found

DUTFUT CONDITIONS

E = @ if the line was found
E = 17 if the line was notl found,
PTRI points 10 the line lengath bula of

the desired line, if Found, slse o1t
points 1o the zame byte of the mext
Righeszt line

NOTE; Upon return a LDBTI R2ZB.=PTRI1-
would Eoad tnto EZE the length of the
found line that is PTR1 1= really
polnting to the least significant bDure
of the line number #ll reaisters are
saved and restored

B-38

Section 8:

Reference Material

IMFUT COMDITION N FG .I'IIIR
UT COMDITIONS i
PARSE
Parses an arrau FlB=Fil = Pointer to inpdl =iream
variable referencae Fi4 Lurrent token
with ho Subsertpts, k20 ="Haxt character
aS L~
i FTRZ = FoalmRter to aygtpyt straank
PREINTHE §1 A I ; -
QUTPUT CONDITIONS
SCAN must have besn
dame =t EBRntrg., EFl if successful
E=8" 1§ unsuccezziul
| FP5
ITHPUT STACE COMNTENTS
] MATH
Runtime code for 1he . k-walue (B=-bytlea)d
sustem function FP RI@====3%
Feturns the fracticnsl DUTPUT STACK LONTENTS
PO Tian af- X,
FP{E) prasylr [(B-bBuytes
Rrg=<-2%
DUTPUT REGISTER CONTENTS
T = F4d-Fa7 Copu of resul1
]El
42
5e |
B2
FRAME,

Runtime code for
ERSIC =tat

amarl

FRANE

£

28
36
48
28
L)
78

| = O LN B o Y=

—| | T N
Rl = e o g et P o=

CRT

8-39

Section B: Reference Material

GSN

GYH
" Z45432 INFUT COHDITIONS
PARGE il '|'__ FiB-R1l = Fointer fo impat =Tream
ans Ttring and L FoLanrent Loken
marie paragmetge RZG = Haxt charactfer
1he
Taken
= PTRE = Polmfer to oulpuat froeam
OUTPUT CONDITIONS
Fra=-kr11 Folnter 14 1npul Strsat
FEi14 = Hext1 tokan
FZa = Ma=1 characiar
Fad-k47 = Se1 by SCARN
QUTPUT ENC FOINTEER
FTRZ2 BEl4 &' entrdy)
Humerio sarakster =
ST ing parameter
1
GEN+NN | 2
EMFUT COMDETION
PARSE FiB-F11l = Paimter 1o LARPUWT =1ream
ohe sTring and F14 = Lurrent rtokan
3 numeric paramslars Fzp = MHext charactar
and pushes 1he
inmcoming 1aken
FTRZ Faifnter 14 GuUipul =S0rgah
QUTFUT CONDITIONS
FlE-R1l1 = FPeinter 19 LNPul Straan
Fid4 = HNext itoken
FZa = Mex1' characier
F4a-8#47 = Se1 ba SCAN
OUTFUT EAC POLINTEE
PTR2=== Eld ar antry 1 buyte
Mumerte parameter tokens
i Bigr]
H1rihy parameter tokens
fw butesh
G/A o
cle
CRT o H
Toggles ALPHA 1o
GRAFH and GRAFH to
ALEPHA (zane as 1he |
AG hagd,
|
|

Section 8:

Reference Material

INFPUT CONDITIONS
Parzes @, 1., or = FRi1O-F11 = Folnter "o LOpUl stream
line number refar- P_ﬁ'—" =II'_“urr-5~r-.~r taken
ences a2nd gpuUshes th FZu et charactear
imcoming token ©R14
! : PTRZ = Fointer to ouwtplit b am
OUTFUT EnNC FOIMTER
FRg———= [ncoming Takegn ¢ bute
== I bute line 4
1:;: L 32 Invager comstant ftolken
EE] Lepte lafnie #H
5 32 Iinteaer constant tolan
- HOTE :
= Ei1ther or both line nuwbers are aptional
P sq The dautput stream magw bhe dilfferent
IHNFUT CONDLITIONS
Parses Zero or onsg Ele-FLl = Poanter fto bhput stiream
[thne riumber rofer- F14 = Current token
ence and pushes 1he EZ2B = Mext! characrer
incoming teken (F14 -
FTR: = Porntap P gt e 1Treah
OUTFUT EMC FOINWTER
FIRE=—=3 [ncoming token 1 bute)
B & Z obiygte lime B
_.1:;:,: 3z Intager conzlant 1alan
E
HMOTE: The line rumber (2 apti1anal so 1he
ouUTput stream wad be differant.
=]
4 THFUT TONDITIQNS
[N F 5 FIo-Fi1l = Points to Input Straas
FParzaes rtera oF tuo Fid = Current token
FUmMEr 1l parametsars FEzxa = MHawr charscter
and then pushes _the
et BRI i FTIRZ = Fointer to owtpgt P
GUTRUT CONDLTIONS
FI1AG-P1l = Pointer to LREUY STC23al
F14 = Hgw1 tolban
FRZ2a = MHexi character
E33 = Numbzsr of parameter Found
OUTPFUT ENC POIHTEFR
FTR2Z Fl14 a1 =ntru butel
Humeric paramefer tolbens
q bBytes)

G@12N
PARSE

GO1IN
PARSE

GEOR2N
PARSE

B-41

Section 8: Reference Material

G1l20R4
ITNFUT COHDITIORS
PARGE
Pafges oRé Ve G RIB-R11 = Pointer 1o LHpuT Stream
four lime number Fld = Lurrent tolken
references and pushes R2d ='Neéxt ehargeten
the thcamiha fTalan A
cR140, FTRZ = Fointer to OUTPpul Stream
QUTFUT CONMDITIONS
Flog=F1l1l = Pailnter 1o LAPpUl sSiPresmn
F14 = Hextr 1oken
FEa = MHext character
FZ4 = Humber of parameters Found
OQUTFUT ERC POLINTER
PTRZ-—--—> R14 at enipy il byre?
Numeric parameter tokens
e butegd
GlORZN [T CIOFZN
= Address 2476l LHFUT CONDITIONS
PARhE Rom 8 |'_!_. RIB-R11 = Pointer to infUl ZLiF&am
Parses ana oF TWo E14 Current 1aken
RUmerie parameters RZD = Hext characiar
afrdd thern Bk B

incoming rokan (F140

Fointer te oytpal IFEam

i PTRZ

OUTPUT CONDITIONS

E10-R11 = Paoaintar td 1hput STFP23m
k14 = Hest taken
RZ2D = Heurt charscter
F3d4 = Humber of garamelesrs found
GUTRUT ENC FPOINTER
FfR&2————* Ri4 av entry 1 bByiad
Humariec paramester takens
lx butesh
GC R THFUT CORDITIONS
i i - LM 2
PARSE
Gets the nekt nan— EtB-R11 = Pointer to inpul Sircan
blank haracter 1 T o
Pag, IF iha charscter | OUTPUT CONDITIAONS
1 o carrisdn raturn
then the FI@ poatnter F-2u Hex1 non-blank charscrter
Ll not pnoramonted,.
The actual coda t=3
GCHAF SAD
| BIH
T = GCHI LOBD RZ2ZB.RI8
r ‘|‘= MB R28.5135
RS JZR GCHETH
=8 3 I FOBD FRZB_+ELB
= A o
}ﬂ Ef ?; CHE RZ24.,=40
CTAL A ‘: JIR GCHI1
wh e - -
T r GLHRETH PRAD
52 §; b2 BTH
F i 2 |

B-42

Section B: Reference Material

GCLR.
INFPUT STRCK CONTENTS
CRT
Rurtime code for the Top of stack - dprtional Y-ordinal
GCLEAF stvatement, LB butes)
Hig———"
QUTPUT STRCK CONTENTS
fempiyl
RlZ2———=%
CEGE. GEQS.
B3t INPUT STACK CONTENTS
i : MATH
Checks to see 1T sne Length of =ztring "R’ r%—h'l"t_::'
string 12 greater Address of siring '"A® Ci-byt
than or equal to o a Length of string 'B' {2-bytes
secend string Addre=ss of s1rang “B' (I=byres)
RLZ=-
QUTFUT STACE CONTENTS
A*=E True False value f8-bytesld
BFles—==
} OUTFUT REGISTER CONTENTS
_ E7B-R?F = Lopd of trossfalzse walue
-5
2"5_' HOTE: The truesfalse value is =8 if
e false; =1 1f true and iz tn floatins-
= paint farmat
GEQ.
LHPUT STHCE CONTEMNTS N
MATH
A-walue ta-bytes?
fumber 15 areater S _%:*’-’l]'l“' CH=byTesd
tham or squal to_a ko
secomnd riumbar .
CUTFUT STACKE COHTENTS
Ri=B True- False wvalus= B-bytesy
Rld——=
11 E 3 T4 15 Te T7 | HOTE: The truesfalse walue will aluwawys
L = e b = tadged integer sma LELY ba =1 if
oL B2ledtrd)en ok 2l true and =8 f false,
ECIENNEREE el 35 37
48 41 42 45 46 47
5851 .52 55 56 57
68 61 & 55 &
E N EFIEE 75 [
ORIAR[OC] EJET[FIRIFTRS
dejizlo o) - 1 - |

B8-43

Section

GET)
PARSE

GETI1N
PARGE

GET2N
PARSE

B: Reference

Material

Hame

Addrass IRPUT CONOLITIONS
Eom # X: El1B8-F11 = Pointar to inpul stream
Checke E 14 Hext token
R2G = MNext characrter
saken FTREZ = Fointer to outputl stream
ERRORE = ;
not Found, else SCANs OUTRUT -CONOITIONS
and returns.
If successdful;
E=1
Fl4 # Hexr SCAN token
RZ 0 = Newxt® characiler
- = R4B=F47 = Set by SCAN before exil,
‘J__': Jéj-: %::- TIE:EHrnﬁqss{ul
;; i; i Mg reaistaers will havs been changad
53 =3 . and ERROR will have bean called.
2d 53
B
Telra
I EA K
Ok ;] E
I |
GETIN
24557 IWPUT LCONDLTIONS
! i Romisb Wi
IParses cne AUuseria Fla-E1l -T_'\.l:IrIII:I' PE 1fFur 2123
lparameter ifd plUuzhes Fl4 = Current token
incoming teken (Fldi, e M b eHAr ot &7
FTFE = Foanter fto oultput streoan
QUTPUT CONDITIONS
Ela=Fll = Pointar o itnput e an
Fl4 = Hervr 1aken
R = Mexr character
S F4p-Fa7 = Setr ba SCAN
1 1 AUTEUT EHC FOIWNTEFR
B ZF
E H FTRZ---- Fi4 at antry L byta
al Mumarin pargmeldat Takens
=] e i butas=s
7374
E
FHNFUT CONDITIONS
WO M meEr 3 E-.t?'P:| = IE‘-:\I'-“EI' ’.':-II Input StFash
= and pu ac 4 T greent ok &h
inooninag ?“|“h CELd T, E2a = Hexr charaotern
FTR2 = Fainter to OQutpul ZTream
GUTFUT CONODLTIONS
Fia-FPl11 = Fa 1 1nRERY sftroaam
P14 &]
EZa = 2 o ter
Fad@=Rda47® = CRN
BUTFUT EHNC FOINTEF
FIRZ==== Fid a1 antru 1 bute
Humerisc paranater tolbens
i butesa

Section 8:

Reference Material

Addrass
Fom #

ITNFUT CONDITIONS

Parsas four NUmerioc Fl18-F1L = FPainter fto inpul S1pFeam
parametars and pushes R4 = Curranpt foken
fncoming token CRI43 R = Hestv character
RTRZ Fointer fo outpulbt stream
QUTPUT CONDITIDNS
El189-FEl1t = Polnre T pripu P am
E14 = Newt 1akan
RZa Hext character
RAA-RAT = Sat bue SCAM
DUTPUT ENC POINTEF
FTRE-—---3 FI4 a1 entruy 1 bute
Mumeric paramerer 1okens
bytes:
IHPUT CONHDITIODMNS
(2 adrrent token FlA=R11 = Fointer to input strean
comma Cat. parea Fid = Current token
timal and i faund k2w = Next character
does a3 SCAN re aat -
past 1t, alsa cails OUTFLUT CONDITIAONS
ERFOR.)
I¥f camma wazr Fawund
Fl14 = Hest iakern
BE20 = Mext characier
Fa4@=-F47 = Sa1 bu SCHN
) E=1
La I = : a
=0 f Comma wa< fmat! Found ERFRDE will Hawve
.. baen called and E=A
ITHPUT CONDITIOGNS
El@#-F11 = Pointer 1o dnpuat stream
Fid = Current token
S8R = Next ohifcse rer
PTRZ = Polhter 1o ouipul fream
BUTFUT CONDITIONS
F19-811 = Polnter t& fnput sitrasil
P'!-I [
e = Nest charagter
FE = MHumber of parameters {found
DUTPUT ENC FOINTER
PTEZ——--% R14 at =ntruy Ll byted
Numeriec paramets tolhens
(= Bytes:

GETCMA
PARSE

GETPA?
PARGE

Section

GETPAR
PARSE

GLOAD,
CRT

GOTOSU
PARSE

8: Reference Material

= il

o paramete
1 31
artig fimbigs

tabla, I4 RISsd,
rarsed
Lk

wmber

aqugal That

THFUT

Bl t
BEle = Current T¢
r2N = HMext char
FE5 : Humber of

c=0 1t an
FTRZ = Pointar t

ODUTPUT CONOLITIONS

GETFAF pusheas Fll I Rp Wt = tresm
NPUl I%)en T =
f “tha pagrametrars = SO TER
= L = Far amelar Found
Lol QUTFUT ENC POTHTER
'_'.':':’ PR Eid mt entru i1
r Nuamer 1 Par amalar
A -
Eike
[TE |
THPUT STRCK CONTEMTS
¥
'iPunr_lr...n_ coade far fhe Top aof =13ck-» File name length (2 butesd
IBASIC =st1atoment File nams address (3 byres)
| RiP———
GLTAD file name
ODUTFLT STACKE CONTENTS
et
| P12-——- 3
a1 s 15 1= I |
BN 14 15
2A 21 23 24 23
28 31 33 24 15
48 41 43 44 45
50 51 53 54 55
&8 &1 3 64 65
7O 71 73 74 75
ARIOC] E [STIPT
o] Ul ol ol = Tt
IMFPUT CoORDITIONS
FParzes & GOTD oF E1g=-R11 = Pointer to input stream
GOSUE numbsr or label 14 = LOTOD owr GASWE tolen
akd ECANs befars FEa = 'Hext character
FETLEAL G .)
OUTFUT CONDITIONS
I¥ =ucoess1ul
P14 = MHewt token
B2 l’_l---l character
Rd4d-f47T = S0 ba SCAN
END
1¥ umsuyzcarslul thsen LC=0

Section 8: Heference Material

| GRS.
FENRUT STRCE COHNTENTS ”ETH
Cheock=s 1'a ses if one Length of =tring H
=Trifna i=s dreater Address of string 'A'
thar asanather strina Lengath af ztring "B
Address of =t1rira 'E
e iy
AQUTPUT STACK CONTEMNTS
AYE TruesFal=se walue tH-butesh
Ry
?5 OUTPUT REGCISTER CONTENTS
=2
;g FIB-R77 = LCopy of truefaltse waluw.
=
:é HOTE: The Truesfalse value b5 =0 4f
55 Talee. =1 1F trug and is in floating-
T; aintl formal
GH.
IHFUT STRCK CONTENTS M;\TH
Tegsts ta sae iF one A-value {S=bytes)
number 1= greafer B-walue {8-byvesd
i P
Tthan a Tecond number, fra2
GUTPFUT STALE COHNTENTS
RYEB TruesFalre wvalue (8-butes
R1Z———-3
?B NOTE: The truesfalse walue will alwuauys
= be a tagged integer and will be a 1 1f
-'-_;:'L-r'- true-and a @ aF Talse.
4@
=0 |
&8
7
5 .
aaliluuln] = [- |
Name GRAD . | GRAD.
Addrezs The actual code Lo
Fom B MATH
Furs 1he computer In DEG. LOF RIe,=30C
arads wo-de Tar STOORG STED B#W,=DEL
mith operstidns ETH
BYT 241
RA0, CLE R3c
iIHF STOORLG
Eil 241
GREAD CLE F36
DCE FEI6
JHP STOODRG
e] [T
£115]1=
125126
=5
AEEEEE
S5|56|57 |
ES|EE |Er
3 il Il
[FTRIFTEZ
H

e

Section 8: Reference Material

GRAFA .
L2626
Bl o 5= T
Forces the CET ta
GFEAFH RLL maode.

~dl {Fy LN s s [o= DU
|| LA L ChCaLnoa gy

P B

GRAPH GRAFH
. 12564 QUTPUT CONDITIONS
CRT Rom A 7 ETRE
11f the CRT dicplay is I tha CRT 15 in GRAFH NORHAL moadse &t
trn ALFPHA HOFRNMAL mode gniry, it will be in GRAFPH NORHAL mode
at enmtra, 1t will Be at Exit, ¥ the CRT t& tm GRAPH ALL
guwitched to GRAPH mode atlt entry i1t will be in GRAPH HALL
HORMAL modé. glse mode &t Exit, 1F the CRT is in ALPHA
nothing will be dene; HORMAL mode atv entry, 1t will be in
GERFH HOBEHAL mode at exit, If the CRT
is in ALPHA ALL mode &t ofntrua, 191 will
be in ALFPHA ALL mode &t exit, e
return address will also be thrown away
beforeg returning 3f 11 was in ALPHA ALL
mode, =0 11 won'i return to the calling
Foutine.
"H_Pl Hame
& i eH; Addrass
CRT Fom #
Forces 1the CRT 1o
GRAPH HOEMAL mode

g§-48

Section B8: Heference Material

CETOR - i
EFE?H INEUT STACK COMTENTS GSTOR.
320 TR | CRT

a
Runtime code far the Top of stack-» File mame length {2 butes)
EfSIC statam F1le name sddress (3 butres)

GETOFE <file name’

OUTPUT STACK CONTENTS

C@amp 1y
WlZ~=~=3
a
HE:N
28
3a
48
54
L)
e
2 FiRiETRE
T - | U0
o . HLFLIH
INpLR FREGISTER CONTENTS -
CRT
IDutput=s 3 =trima. to RZe-R27 fddrezss aof the string
lthe £RT., leavina the R36-R3IF = Length of the siring
itursor POsSttilan =t
|Flu: erid af tha ztring
IMFPUT COMDOITIONS CURS
HELW CON ONS
CRT
The curgdr mu=st! bea of T fa call 19 DECUERZ
must havwe been maded prior o celling

HRACURS,
OUTPUT COMOITIONS
CETEYT will gontatn the ne&w cursor

address dwhich will be tha sama az the
contents of CRTRAH,

) W - 3 & E KId=R I35 Haw curser address
1y I'2F13)1 15]1& .
i P E:-'l e ;:E_ The actual code Fom HMOURS 1z
S i-; 3 Sl HACURS LDHD R34, =CRTRAH

'-'.f = JEE «BYTCET

el FTH

BalEd

relv3

C

8-49

Section

HORN
MISC.

ICOS
MATH

IDRAW.
CRT

8-58

g

Reference Material

Hoame HOFH
Addre=ss Lb4an THRUT COMDITTIONS
Rom # R o ioi s b
Lower-level BEEP RIQ-R3I1 = a8:8 "
antry poifi FIZ2=-PE3 Frequericy 4 v 4-digat BLOD §
Tha ARF nmud=st be T4 st entru
OCH must be BCO a1 &BTEY.,
FE5=PS7 = [luration oz v d=digat BLCDO B
A gxample af 1he call soquenace
LOn R3@,=48 .8
LOM R3IZ.=SAC, @ I OOR ANT VALWE
LON PSS, =0,1.8 OF HANY MRLUE
BCD
ARFRF =4
JSE =HORN

STIFIFIFTE

R

Hama
Address
Rom #
Feiurhs

cosine o

inverse
o e 1

the

af afr

INPUT STRCK CONTENTS

Argument {3 bures)

GUTPUT STHCK CONTENTS

ACSLfrgument? (8 byres)

RiZ=——==3
Hame lnFﬂH
Address (3 B 1 71 INFUT ETRACE CONTENTS
Fom # Romish
IBuntime code For tha X-value {8 butes)
IBHF]C statemen Y- | e iE Bytlasg)
A]
IOFAN el s s
OUTPUT STACE CONTENTS
cEmnE gl EH O Bgtesg
Rig-——%3
Fooi2 5 e i
LAty il 2] 4 15 EE
2a 21722 4 2% 28
38 31 32 4 35 36
48 41 42 4 45 46
584 51 52 4 55 58
50 &1 E2 4 65 66
ra 71 72 4 757
E[OC T 1
K]

Section 8:

Reference Material

IHOVE
Addrass Gde43
Rom #& Romjisb
Funtime code Foer the
IERS1IC =srarement

Name

ITHDVYE .

Ec-
!
Ji Gl 0 B
I i RS

| e e L
E 0 D D D D
= O LA adl i)

H R

1|| [==]

IHFUT STACK CONTENTS
E-walue (3 by EE
*f-walua 8 bu =

Elz

OUTPFUT STACE CONTENTS

teEmptdr tH byl&ezs

R12=

[NFUT CONOITIONS
= 5 . The CRT's i1nternal byle address polnter
Reads one charseter. | tuhich iz zar hu storing to CRTBAD) must
CBET meamory pointed 1o e polnfing to tha addre=zs of 1The bute
by the CRT's byte ta be read.
i R et BUTPUT REGISTER CONTENTS
REZZ Character from CRT moemoryg
NOTE: The CPU must be in BIN mode at
L8 I The actual code For THOHE 1:=:
@ 11 e 1= 14 [5 J& |7 | S E
Laft 21314t 5]1eil
EERERNPFAEE] EXR EXT EXT L INCHE DRF 32
ECIESY - : EEIEENERIETIEE, : 5p SBUSY iRerer 16 CHiETE
4|4l [42]43144]45(46]47 ICE B8
SBlgliselazlad laplaelar) STED R#&,=CRTSTS
[N I el e o] - LOOP? LOBED RW,=CRETSTE
e P12]|73|74]75 ¢E.i?|| 100 Loop=
om HRTIJL-I_I-_ RS LOBD R32.=CRTOAT
e = D T S l: l FTH
B INPUT STACK CONTENTS
5]
Feturns the largest lur_lu!ever-
rumber that ean be Ril#n===2
hamdlad by the s e e
O G T OUTPUT STACKE CONTENTS
999099999989 E499 c ?;;;;ggﬁ;qq?u_ﬂr C3-hutes)
Rl 2=

TMOVE.
CRT

INCHR
CRT

INEFIM
M&ATH

Section 8: Reference Material

INIT, R -
MISC.
i
27
i
a7
§7
i
LHPUT,
MISC.
[15]
26
36
46
-1
6B
Fill
INTS
: HF 5 ¢ =
MATH I T TRCK CONTENTS
Runtime code for the A=yalue L8-bytes)
sustem function FLOOR RiZ———=3
|[Returns the larcesi OUTPLUT STRLCK CONTENTS

infager = A
FLDOORI{K Y rpesdult (B~Byurss)

R - SR
OUTPUT REGISTER LCOMTEHNTS

— Fd4B-F4T7 = Copy of result

8 4 |5 |6 [F
(%] B T N =
2@} 21 24 2a |
e 34 36

48 41 4d q5

5@ 51 54 36

50 &1 &4 56

i} Y F

ODEIAR|OC ISTIFTRIFTRE
e IETo ool = | =

5-52

Section 8: Reference Material

HNams

Addres
Ram B

THTDTY

INFUT STACK CONTENT INTDIV
STARAC L] EHTS -
A-vwzlue (S-butes) pMaTH

Runtime coade Far the - BE-value (S-butes)
system aperatar DI1u, klz- ' .

Returns the intearal GUTPUT STRCE CONTENTS
portion of the result

af A diwvided by B, i R~B razult (E8-butes)

s

o N INTEGH
fi INFUT CONDITIONS
R PARSE
Fetoches an tnteger FlB-R1l = Pointer to input sitream
from the inoul sStiream rRZ28 = Hext character
AT parz&=-time <guch
as @ 1Ane number?. QUTEUT CONDITIDNS
ElIB-R1l = Fointer 'o input straae
R28 = MHext character fnon-digill
R22 = Humber of digiis seen (BLOD
RIE = Exponent C15C 1§ less than &
digits were found?
3 = E4B-Ra4? = The inteder {up to 18 digliis}
5T T The least significant digit
= a'_. te o tThe rightl mibble af F4d,
- ;
E'_.._ E @ IF some digits were Found
= s ;% E =1 If no digirts were (ound
E4loa|oe|or
Bl 3 Bl il il
ﬁ?} T?ﬁ¢1ﬂﬂ
g [= | =
INPUT REGISTER CONTEMNTS - INTHUL
¢ Ok
WETH MATH

Hultiplies twuo 16-hif FEG-REF = 16-bit bimary numbar A
binary numbars giving | R¥6—F77 = 16-bit binary number E
3 -bBLr1 Binary

B : OUTPUT REGISTER COMTENTS

REE=-R&? = 1&-bi1 bimard numbear A
E7&—R77 = 1&-bit binary number §
RE4d=RS7 = FZ=bhiv rea=zulrt AtE

NOTE: EWNTNUL does a SHO at entrue and a

7 0 I E] 4 B i PAD 31 awit and Fsaves and rastoraes a1l
EE E ég é% Lj iE é rFegqilsters used except for RS4-R4T.
KT J2]33[34{35
2041424344145 4
ET-RERE bR
N N e N R A
FEIFPIIF2]|?3[7a4|?PolTe]|7T

C

I

OFTHRID E [STIPIRIFTIRZ
[= I o R [At |

-1 =

B-53

Section 8: Reference Material

INTORL
MATH

IES
MATH

IPLOT,.
CRT

g-54

Name
Address

Comwer:? rumbers from
he Tagged—-1nieger
s T tTo The raal

loaring-petnnd

RG-S
e I
s |24 125
2134135
RN
R EL AT
3 &4 65
F3|vd |75

THPUT REGISTER CONTEMNTS

REB-R&e7 = Tagged-integer wvalua

DUTPLUT RELISTEFR

ESA-RET = Raal

CONTENTS

wal

e

HOTE: This routine assunes that

ed=intager walue.
Tagaed-i1ntTEeger

his routine with

contalng a taga
not check faor a
Therefors, &f =
a real walwe an
indeterminate w

U C
Fei
slusa

all 1

weu' 11

returned.

FEO-RE&T

[+ does

val e,

ae1

3T

TFS
547

7@

ddress
Rom # 0 CETWECE |
Funtime code fTor the
sustam fuenctiran 1P

Feturns 1he inteaer
Frortitons at X,

g1t F.*ﬁ i 15 [|7
TR0 I R A S e
a2 |22l2z|24|25]26]2
3 233 34 35 36 3
] 2 432 44 45 46 4
-] 2.593'594 55 36 5
5 2 63 64 85 66 67
F i IREY iR R
EIST[PTRIFTRS
| A =

ITRPUT STRCK CONTENTS

t—¥a5lue {B=-bhyte=}

R12----1

OUTPUT STACE COMTEMTS

EFLXDY rFes
R1z----1

alt

{8-Butesh

OUTFUT REGISTER COMNTENTS

F40-F47 = Capy

of resulnx

Name
Address
Rom W tomish KNl
Funtime code for the
EASIC =tateman

[FLAOT ol

1
=
2
3
4
]
&
7

=l 0 O o =

LA LR On LA L

= (Fy LA B (a1
] Tl) Lol o] fa)

T | e e e = =

[NFUT S&TACK CONTENTS

E-wvalue
Y-wvalue

(g

ig

bytes
butes

OUTRPUT STRCE CONTENTS

Ea |

Butes

A

Section 8: Reference Material

-]l (Y= [ra

2
2
=2
2
?_

i ISIN
FHPUT STRCE CONTENTS
_ | MATH
: . Aroument <& bBules)
1N af an argumen? L Bl ¥
OUTPUT STALCKE CORTENTS
HSNCArgunent) {8 bdyiasd
Blgs——23
&
5
15
28
35
45
35
L=
[id=]
PiT
INFUT STRLCE CONTENT IT'E‘N
U o Lk CON HTa |
MATH
Return=s the itnwerse | Argument <8 bytaz)
tangent af an EiZ2 -
arauman t
| DLTPUT STACKE CONTENTS
ATH I Arqumenty 8 bhulteas)
REZ===—3
L=]
1
5
3
4
=]
IHFUT COMNDITIONS KEYLA'
i MISC.
I¥f B&E = 148 then the CHLLC modo kéy
labels will be displaved, else 1he
FUHN mode key labels will be displausd;

8-55

Section

LABEL,
CRT

LDIR.
CRT

LEDS.
MATH

8: Reference Material

INFUT STACK CONTENTS
i Length of strine 2 butes]
time code for the Address aof si1ring (3 Butes)
IT =ratemen! Pl2———-%
LREEL FA$ DUTPUT STACKE CONTENTS
famptgd
Rlig=n——F
g2 3 [5]
1213 15
22 23 25
22 33 35
42 43 45
=T I 53
62 63 &35
F2TS =]
r FT
LDIR.,
b7 B52 INFUT STRACE COHTENTS
Fom 8 1 i
Puntime code For tvhe o LODIF walue ©F bydles)
EASIT =tatement R1Z=——==3
LOIR o QUTPUT STACHE COMTEMTS
CEmp gl
R1&8———=3
g1
[1all
=82
30 3
48 4
50 5
& &
™ R
IHFUT STRCK CONTENTS
Chaalie 1o Sae ir Sfhe Lenath of #trings "A' {Z2-butes’
string Ls less than Address of =tring "A' (I-butasz)
or saual te a second lLenath of strimg 'B' C2-byrgsd
S1Eing, fAddress of =rring 'E (3-bytes)
R1Z--—--%
QUTFUT STRCE CONTENTS
A= TruesFalze walue tg-butes)
RlE——-—=
QUTPUT REGISTER CONTEHTS
RTE-R7Y = Copy of truesfalse value.
NOTE1 The truesfalse walue is =0 1f
false, =1 1f 1rue and is in floating-
point Foermal,

Section 8:

Reference Material

LEQ.
INPUT STRACE CONTEHWNTS
MATH
Tects tao s 1F one A-walue CE-buytes)
riumber ta E2E LM Aan = B VAU e CB-bytes)
or equzl ¥ zecond R1E-—--
ODUTPUT STACKE CONTENTS
Hi=B TruesFalse walue (8-bares
Rlg—-——=]
.I:Lr-}--- T} ?. ']1-.- ?-.-_ 'l:' f HOTE The truesFalse value will slwiags
TR ?; Sk S5 2? B be a3 tzgged-integer and will be =1 if
A cole = C o L= e true znd =@ t False
Bt3 SEFT 33| SRS K
rBIFIIVEI7P3[74l75I7E]|F7T
ORIAR|OC] E |STIFTRIFTR2
(dafrzTululu e[7=
Heme LINET.
RAddress THPUT STACK LCONTEHNTS
Eaom W CRT
Puntima ¢ thHa Ling type walus B butes)
BASIC 31 BFlgs—===
LINE TWFE OUTPUT STACY COMTENTS
CEmpry
= | PRPa
2223
32 33
42 43
32 53
62 632
fE2 73
LIST.
Thig routine will list the BASIL program,
It checks the RI2 stack Foar optianal Li=t FRINT
Same aE th LIST parameters (line numsbers) by comparing
c;m;and. -) RE12-RIiZ with top of stack, Be sure they're
aqual 1§ yoad den't' push ang parametTErs on
the =rack or thar thed're squal before
you push one or 'wo paramelers CThe
parameters would be tagged—-inteasrs or
flpating paint numabers.} The [isting g9aes
ta the CET 15 dewice.

d
H

= i LA s L] T
adl o) 0] Gl e)

1
E
5
&

-+
4
4
4
4
3
4
T

E

|
3
4
=1
[

=
5
5
5
=

A& Gl P -—i\l

B]

DE|ARFIDC
I A

s
Ul o

Section B: Reference Material

LM5 Hame 5 I
Addrezs IMNFUT STACK CORTENTS
MATH 8 M
Returns 1he LHOX3 ¥ walue (E-bytes)
Rlz ¥

QUTRUT STACK COMNTENTS

LHOKY resuly (B-buyltes?

OUTFUT REGISTER CONTENTS

F4d-F47 = Lopu of 1He resualt

Ll

=0 L s] 8
o D

=l O U0 s oa) (] =
aLnon o on

[HNFUT STHRCK CONTENTS

QUTFUT STACK CONTENTS

LLETEX Y result ¢B-buytesi
Fla----73

OUTFUT REGISTER COMTENTS

3 E EA@=REd47 = Copu of the resuli
R 14 15 BES
AEEIEETER
33 34 3
43 44 4!
E_-3 24 3
53 B4 B
73 74 7
[EJSiIr®
AR

Hama

LTS,

Addrass [HFUT STACE CONMTENTS
MATH Rom # M
Chacks to see if ons | Lerngih of siring 'A’ Z-butes)
siring: s les tham = Addreszs of irkmg "R C3—=bytesd
zecond strimg 1 Lenath of s ina '8! (2-budtes)
Rddres=s of s1rFing B! {3-bute=sh
RL2————
AUTPUT STRCE CONTENTS
ACE TruasFalsza valuse LH-bButes
RiZ—====
QUTFUT RELISTER CONTEHNTS
EFB-RTV = Copd of 1ruesfalse walue
NOTE: The trua fFalse wvwalue is =0 if
false. =1 14 true and 15 an Tleoating

point Tormanrt,

8-58

Section B:

Beference Material

IHFUT STAHCYE CONTERNTS
R-walue (B-butes!
B-walue (O-bytl1as}k
RLa==—
OUTPUT STACKE CONTENTS
ALl TruesFalse wvalus (B-buytes)
Ql: _____
-1 - = B £ A 3SR HOTE: The true-false walus will alwaus
lL;“ 1e lg Lq 1; .1,”-—.!_-- be & taaged-1nteger and will bBe =1 Li
EUBESREMAREARFIRG - ¢ - tride and =8 L€ false,
Zel3 k3 | 340
-
|
[NPUT CcalNDITIons
Moves the cur Thie CPU must be in BIH mode ar eniru.
EE'EHLF '::';'l'prf;.i CRTEYT wusr confain The current bute
C o see tf 1t addressz
of the ;
current page of CRT The cur=br must be off at ertry fa call
Mmoo |n|.1.|.|r.-JF_-I:| to DECURZ will do’ that
around |f 11 doas.)
g 11 [[2 [4 [5 [[¥_|
Lafi i M bl Lot o QuTRUT CONDITIONS
= £ L - [=3
e 337 CETEYT snd CRTEAD will be sethiing o
;.-I".-_'. -.513 = ;;:-E - the nes cursor address,
o =t b} i
.F:; -g celc i The curser will still be off
2
M RE34-F35 = The new cursor address
58 I N R
[NFUT CONDITIONS
Haves the cures The CFU must be im BIN mode 31 entrd.
=3 e
E:—!fj"l'“— ll'-l;LPH.—:IH.-.E-hﬁru. CRTBYT mustr contain the ecyrrent bute
tbDoesn'i check 16 2ee zddress,
i [. =] Tk
:-ZrF::r.:n;;agf:.rclt.PT = lhe cursor must be of f a1 entrg & call
pac el e to DECURZ will do that?
OUTFUT CONDITEONS
a1 CRTEYT and CRTBRO will ke pointing 1o
LE?_ 1the new cursor address,
L
: The curscr will =till be o6
3 F34-F35 The new cursor address,
H
=l

LT.
MATH

LTCUR.
CHT

LTCURS
CRT

Section 8: Reference Material

MAX1E
MATH

LHFUT

THCK

CONTENTE

Fertuarn thae larger A-wslue g bylas?
af tug walue B-value (8 burvesd
(- B
GUTPUT STRCK CONTENTS
A HA E values L8 bovras:
(= -
2
2
2
£
MIN1G fahya
2el25 LHFUT STACE CONTENTS
MATH o _ 0 [ETWETE
IPeturns tha zemaller A-value B obytes)
of- twa walues BE-value B hytesh
B -
OUTFUT STALCE LCONTENTS
H 1IN & value 3 butez)
R 2—-===X
5
.
Z5
35
45
=]
(-}

noo1a

MOD1@

22n54] INFUT STACKE COHTENTS:
MATH o [ETRETEH |
FEeiurns i HOD ¥ i walue {(E=bytos?
¥ walue (EB-bytas)
RliZ———=F
DUTPUT STACKE CONTENTS
& HOD Y (8-byt=s)
Rlg———=2

0 e 0
S D D 5 0 el)
o U
il = =1 =4 =1 =2 G

Section B8: Heference Material

Inzures that the CKFT
smemaory address will
remaln i the ALPHRA
mEmoOre ares when
doing address math.

(Espacially useful
Forr dotmng curfor
movements, }

81 [z |2 [+ |5 1& I
LBl L1JE2] V3 |LA401511E 7
El ER EE EEL R z&."é‘E"ﬁ"‘F
EGIERREFIEE] ETAER
4804 a2 |ladla4afastuldr
o1 N R R R A R
0|6l |62 |63 |6Al65 66167
rll I R A

AR DO E

a4 |- =

INPUT KEGISTER CONTENTS

R&4=R25 = Displacemant of this movement
R24-FE35 = MNew ALFHA memory addras:z

CETEYT muns! contatn the previous ALPHA
mEmord dddress CThus, RI4=RIG
will be the contents of CRTEYT
plus the cantents of R24-BE25,)

OQUTPUT REGIESTER CONTENTS
BE4=5% = Address modified for wrap-around

MOTE: The CPU muszt be in BIN wmode befors
this routine i= called.

MOOADE checlks to sep whether the CRT A
in ALPHA or ALPHA ALL mode,. then check
to sea i the new address 15 past the
end ef thiée appropriate boundaruy I[¥ =o;
adjusts 11 19 wrhap 1T baok To The rap of
ALPHA memory.

5

diztance
{Deesn't amhack 19 gaw
if it gaoes off of 1the
curreant pages of CRET
MEmSry, o

]
N - 308
f@]11]12]13 [3 L&
Zelaflaz s 1251268
Eﬁhé““?f"kz 3k
4|4l 422344 45
= 52|53] "!?‘_l:-'_.“
chlel|e2|ed|6d [-1]
il il i Bl

L

OF|REJDC] E |ST
BT I O I

ITNFUT CONDITIONS
The CPU must be 1n BIHN mode at aniru.

CETEYT must contzin the current bute
address

The cursor must be off at entru <3 pall
te OECURE well de ih&atld

et from cufrent Curzar

RZ4-R2T = QTfs
to desired rigw locatlilon.,

location
OUTPUT CONDITIONS

CETEYT and CRETEAD will bBe pointing 14
the naw curszor addreass,

The oursor will 111 be aoff,

F34-R3I% = The new cursor addre

Howves & block af

mamord from lower

z2ddr 882 1o higher
addra &@5. S1arting
with the highest
gddrass and working
DOHH te the lowest.
{Horks 1n lower &4%
addrez= range onlu.?

B I3 T2 |3 . J4 15 [&6 |7
FREE I I T A T
AN 22 23 24 25 26 2V
RN = ;3 EEEL R
A0[4t[42]43|494|45]4e|47
TN N = =
eRlel|lellei|E4|ES|[EGE|ET
Irefrilr2|r3[v4|7o|Fa|7v7
Celnp[OC] ETeT[rirtpreg
=) T S T) I |

INPUT REGISTER CONTEMNTS

Assumes BIN mode at entru,

R22-F23 = Humber of buWtes o be mowed.
FER4-R25 = Pointer to tha first word of
sopurae Black 1o bae maved f1he

highest addressed butel,

R2Z&E=R27 = Pointer 19 the firs?! word af
the =ink block 1o be moved i1nto
tihe highest addressed buted,

QUTPIIT RELGTSTER LCOMNTENTS

FZ2g-R23 = 4@

R24-R2% = Pointer ta the last werd af
the =zource block o be mowed (The
lowe=s1 addressed butel,

E2e—-E27 = Pointer 1o the last! word af
the sink block to be moved 1nto
Cihie lowest addressed buteld,

HOTE: For mowves involwing extended
weamory, uses the routine EMOVUPR.

MODADE
CRT

MOVCRS
CRT

MOVDN
MISC.

=61

Section

MOVE.,
CRT

MOVUEP
MISC.

MPY 1@
MATH

8-62

Bi:

Reference Material

THFUT STACK CONTENTS
Euntime code Tor the A-walue (8 bytes)
BASIC =sratemant s Y-yalue (8 bytes)
HOWE S > r T
OUTFUT STACK CONTENRTS
Cemp by
Ri2=——=2
3 [5_J&. [+
|13] 15 N
23 25 26 27
23 35 36 37
43 45 46 47
53 55 56 57
65 66 67
r 3 - --- i = ?T
nP ARTDC E ET[PFTRIF TR
nlulnlulol - [0
HPUT REGISTER CONTENTS
Moves a Black of Assunas BIN wode at entrg
memord From higher RzZ~=F23 = HNumber of: butes to be moved,
sddrecsds 6 lLouer R2Z4-R25 = Pointer te the fir=t wird oF
addressss, starting source blook fo be mnoved {the
with the lowest = doue st addressed bytel,
sddress and working RZ6-R27 = Pointer io. the first word of
UP to rhe RAighest, the =ink bloock to be moved into
(Harks in lowar &64F the lowesr addrezsed bylte.
addressirange only. OUTPUT REGTISTER CONTENTS
L 12 REE-R2Z = @
;} ;; R24=F2%5% = Poanter to the last word of
EXm == the zource block re be moaved {the
5 iE highaz1 addresssd byrel,
- == P2Ze=R2Y = Pointar to the last word aof
R the =ink block ro be moved inve
= 3; the highez1 addressed bute.
T i
RE]OC NOTE: For mowes involving extended
5] = memory ., use 1hée radtine EROVOH
HEY L@
33357 LNFUT STACE CONTEHNTS
o T (ene 1)
Multiplies tue Fead R1Z=--=3
numbers=s i A
THEUT REGISTER CONTENTS
FdB-PdA7 = Fesl nunber § ‘2-puiaz;
R30-R57 = Fesl number B (9-butas)
QUTPULT STRACK COMTENTS
Fazult ATE (E-butes?
RiZz-—=-73
1 — 3 = 5 = OUTFUT FEGISTER COHNTEHNTS
: = 5 7 P L T . —
Tl ity T EE IR B Fdha-Faz Fapy af cesiila AIFR
leglaljea E4l25]| 26|27
e S e HOTE: The TPU must bs in BCO mads
Eq 5 =i 54 5 ='_'_:' e bafore calling this routine The tuo
Zn E 4 EE ge =L FPQUMENTE mMUsT be real valuas ar 1he
::I-:1 e '5"4 &5 :‘:l. resull will be unknoun,
0 | i L=

|
—

1]

a:

Eeference

Material

HETROT MPYROI
53519 IHFLT STRCE CONTENTS
I Fon i b N MATH
Multiplies one real Real or tagged-integer A (B-butes)
or tagsgsd—intagsr : Feal or tagged-integer B (B-bytes?
rumber with & fecond Ri2-——~
real or tagged-integer)
A mbET CThis A= The OUTPUT STRACKE CONTEHNTS
main runtlime erniry
paint for the sustem i Fesul 1 AtE {EB-buires}
opErSTor £.0 Rlg-—-=3
OUTRUT FEQISTER CONTEHTS
i F4b-F47 Copy of result A%E
[
; NOTE: The CPU must bea in BCD mode
4 before calling this routine,
4
4
T
&
MSCRE.
A ITHPUT STACK CONTENTS
[: pIsc
Puntime code far 1he Tap of stack-2 Filew name lenagth (2 byrex)
BASIC stateman: File mame addres (3 Bytes)
Humber of records (8 butas})
CTRERTE AS, X, ¥ Optional number of bytes recornd |
(B byresd
RL2———=%
OQUTPUT STALCK COMNTENTS
Lamp Tyl
Rib2-~~
i
i
¥
b
[
T
T
4 [
OFTARIOC] E[57 1FTRz
[u ol ool [o |
MEPRNT
INPUT STACK CONTENTS ¢
pIscC
Top of =tack=> Buffer number (8 butesz)
Optional record B (B butes)
1z ¥
FRINTH® 1§ OUTPUT STARCK COMNTEMTS
Camp iy
Rl @===3
{' NOTE | For figurina out what routipes te
—; call and 1n which order when reading
;i from or primfing to disc data Falesg,
;g first write 1t as a BAGIC statemant
Ee ffarst. lime of & pPragram, Usina the HEN
;; command, look 1ntoc memord Ci1he line will
i be at FUCURR-48Y tvo see what the
: token fork 15, Eefer 1o HSEFRHL for a
list of routinmnes and ftoken numbers

8-f

3

]

Section 8: Reference Material

MSPHENU TSPRHU
DISC ’ The Hazs Storage RON routines. and their
|Romizt associated token numbes (for PRINTH# and
This 15 a note which READE statementis) are:
1 comntinuad From
HEPRNT ,
15 HNESFENT
21 BEEAD .
ar BEONUM
aid FRARE
41 EOSTH
&2 FRHUHA
473 FREOL
= idd PRET
2. 13 14 15 te [V 45 RPARR
: =T o :
ppati 16 PRRERS
e isaloaioe oo 4% EDRERT
4z2laz[a414
52|53]|54]5
e F s =
=8 Il
=
INFUT STACE CONTENTS
Top of stack- File mname length (2 butes?
File name address (3 butes)
Optional value @ {8 butes)
L
OUTPUT STACK CONTENTS
(amptul
[=3
e 5
1
TR 2
B 3I1 32 3
a8 41 42 d
B 51 52 5
B &l 82 5
a7 il
il
MSREHN., i ;
HFU STACE CONTEHWTE
DISC
Remames a file aon a Top of stack-» Old ti1le name lenid bures
dise, aid file nama address (2 bytes)
New file nams length (2 byteso
Hew fila mame address (3 buyutssd
Ri2—-—-=
OUTPUT STRCE CONTENTS
Lemprdl
Fla-—---

i]

W I 0 Fud P 8]

N -
O
iy O G T
|| [P
ted I

= L e)
=] L

a Cadl Lok Ea) Ead dad)

[]
(5]
3]
a
a
%)

8= 7 L B T

| = 1 e

Section 8:

Reference

Material

MNARREA+
INPUT COHDITIONS
PARSE
SCAN: and parzas a3 Fl8-F11 = Fointer fto inepuwt stream
simple Mumarte E2a JHext character
sariabla raef{esrsnrce FTRZ ="Folnter to outpdl stream
[k3 ar arT asl -_ﬂ‘“fjr?nlje = = &
tthat 1=, MAT A=2ER: OQUTFUT CONDITIOMS
I7T successful (rtolken Found wasgs & 1)
then an array reference Ctaoken 2270
willl have been pushed ouwt to FTRE2
Codrputl =streamr and & SCHHN pertormsd
R —T= If unsuccessful when ERRQOF will have
':. .. . e ']'. -] Besn called
F= ir bl
=20 =T 2d =]
2 A =
:
42 43 44 45 4
D2 5354 55 5
62|e3l64
7 A RE R
NARFEF NARREF
23465 INFUT CONDITIONS
: F FEla-811 = Polnter ta input sStream PARSE
Thi® roulineg parses a R4 2 Hext token
zimple numaric) = Mex1 characiar
variable refarence PTEZ = Foinilar to putpul =zlream
a5 &N array referance . .
tthat is. RMAT A=TERY. OUTFUT COHDITIONS
[{f succe=ss{ul (roken found was &5 1}
then an array refersnoe Ctolken 257
will have bean pushed out to FTRZ
Coutpul =21Fréeam’y and a SCHHN perforsed
o If wunsuccessful then ERROF will havae
Eﬂ bean called,
29
DC| E |S
[vlofululol] =7 0 |
HUOHAC o0 NUMCON
23551 LWPUT CONDLITLIAONS
6 FETRETH ¢ PARSE
If the nas1 token L= Fla=-R11 o Farnites o thipdY Siream
8 humnearis constant Flsg = Current token
it iz opushed our 15 B28 = MNext! character
the output =1ream and =
SCAN is called, QUTPUT CONDITIONS
If pumeric constant was Found
FL4 Haxt 1okén
o] = Hewt charasoter
F4B-R4T = Set by SCAN
3 RN Fi
1 l_:.%: E_.é N é“: iz IF nmumeric conRztant wag nat! Taund
TR B R R R EE ’F = registers are unchanged and E=8.
3 2] 3334 T ER
sElel|62lad|le4|en|E6]67F
il 1 il) Il e RS A
=S
GR|GR[OC] E [ETPTIRIPIES
Ul v[ol oo =1 b

g8-65

Section 8:

NUMVA+
PARSE

NUMVAL
PAREE

ONEB
MATH

8-66

Reference Material

Hama
Address
Fom #

TREPEE

ITNPUT CONDITIONS

SCRAM. thor Fl8-R11 = Folnter to¢ InNpul STO&amn
B 3 nUBETFLC Fza = Hex1 charactar
cipress{ion Falls FTRZ = Polhter to oulpul iroam
throwugh ante NHUNYAL o -
OUTPUT TONDITTONS
1F sucoessfFigl
Eg0
Fid = Me«t SCAM 1oksn
FEZa = Next oharacter
Fed-E47 = Ser by SCAN before szt
I¥ wnsuccessiuali
E=%1
F1d 12 PFreset 1 thaoming value =o
othear pars1ing mwmad De tTreied,
Hamea NUHYAL
Rddre=zs ZZa 86 INPUT CONDITIONS
Fom & a R FR1G-Kl1l = FPolnter 1o Lnpul STreamn
Farses 3 numeric Rl = Hexi 1gken
eiprassion ©&fy RO = Hex! character
Erprasrian thal will PTRZ = Fainter ta autput =tream
eventuzally evalusate i i
bl e bt OUTFUT CONDITIGHS
Fumer te <alued,
[f successful
E&d
Fld Hax1 SCAN 1aken
F20n = MNaxit eharacrar
F4d-Fa7 = Se1 buw SCAN before sxitr,
ful:
=t 14 fmcoaming vwalue =o
i1ng mauw be tri=d,

#
Takes ane riumber aff
of the R12 =srack and
cahwearty tt te A
19-bir =1g9ned binary

A (RN [

Nt

FHRLUT STRACK CONTENTS
Fezl or tzgged-integer
B1Z—===)
QUTPUT STACK: CONTEHWTS
fempTial
K12 -

QUTFUT REGISTER COHTENTS

(H-bdyreslh

R4E-R47 = 15=bit signed binary number
RTe-RTT = Lopuw of 15-bit walue

HUOTE I+ the walue 12 negative Then
Rdg-F47 will contain the two's
complement of the absolute walue of the
original argument (that 15, the value -1
wiopuld be returned as ooctal 1777770,

Section 8: Befsrence Material

ONET
MATEH

INFUT STHEE CTONTENTS

Takes one numnber of§ Feal or tagged-integer (8-butes
af the R1Z svack and Lz
convarts it to the

taggad=-trntaaar Format
if 11'=s not already.

DUTPFUT STACE COMTENTS

lemptyl

DUTPUT REGISTEE LCONTENTS

& i 2 T = FaB-Ra7 = Tagged-Inteager walue
11112713 f14]15}16f17
20lgl|ER _,%_3 2al25 @627
RN =2 EE] =4 =5 38 37
48 41 42 43 4 45 46 47
Sa-31 325 4 53 36 57
68 61 52 & 4 65 66 67
FE-7l 7 4 75 V6 77
- = SETE IR TE S
=1 =1
] 1 OWER
Hdd ITHPUT ETRACK CONTEHNTS
nes | MATH
Takes one numbar off Fadl of Taggedrnintegen (S:odies?
of dihe R1Z =stack and, | R1Z-——=
TR0 N M [RR=0 B t b
real i(floating pornt’ ,_ = fim
{farmat converts it QUTPUT STACKE CONTENTS
ta 1ha1 farman
(EmEpty)
Rlg=——7%
DUTFUT FPEGISTER LCOQONTEHTS
E4@-R47 = Faal walue from FIZ2 =tac]
FER=BEET = Copuy of resal value from =tzacl
Name T ONERCI
Address ITNPUT STACHE CONTENTS
Rom # MATH
Takes one Aumber off Fzal or ragged-inteasr CH-butes)
-

aof tha RIZ svack and RIf2—-—--
returns a flag to) i i o
ta]ll whethesr tt i OUTRUT STACK. COMTEMTS
real or Lntegese]

format numbar, tamptal

Ri2 -

| ODUTFLUT FEEGISTER COMNTENTS

Féda-Rd7? = Feal ar faagasd-integer valida
E = B 17 E4Q0-FE47 1= & real number
= 1 1f Ra@-R47 1= a3 tagdaed-integer

TE T E
EERNEE [oo [=1

Section 8: Reference Material
o INFUT STAC ONTENTS
TACK COf
MATH
Takes one nunber off Feal or rtagged-ifteger (S-buresd
of the R1Z stack ond Rl@-==-2
Gonyeris 3t foo5 - 5 -
I6-Bit onsisned RCUTPUT STRCK CONTENTS
bimary walue with a
fSeparata sian {lag, D13__:f?P13-
OUTPUT RELISTER COMTENTS
Fdg-F47 = le-b1t wnsigned DLRary noembar
ETL=R7FT = Copy of 16-Bit value
RE& = S1gn of Id-bDltv walue
IF RId=8 then value = positive
1 RI2HB 1hnen value ¢ neEgal i ve
OUTCH] B OUTCHL 1
Hddress 3 [NFUT CONDITIONS

CRT

Dutputs pre charaoctar CRTEYT must cantaln the sddrass of tThe
1he LRT 3t tha CET me ry - lecatiaon the character 12
recz raptained in g stoared LoTo
B

k32 = Thme ASCLY cade of "He charactar
1o ba outeUT,
The cursor must be off &1 enrrye 15 £all
o DECURE =i11 div that
I = i QUTPLUT CONDITIONS
- rE ERTEVT and CRTERD will be Bornitng 1o
et E? the nmaw cursgr addriess
P 5
;E :E e cursor well zrill be =14
B L& FI4-R3% = The nél cursor address.
FIRIP TR
M =1
OUTCHR o -
HF L CONOITIONS
CRT '
E e A TEs CRTEYT must contain the address of the
5t LFw CET memary lacatién the character i1s
r1nad Ln te stored into;
cralls ; s z
R F3E = The ASCI1l code of the character
ion moves e be output
N1
. " Tha cursor must bae off at enitrwe (a3 call
to DECURZ will da tvhatrd
& P]1 = QUTPUT CONDITIONE
E T
= e

lg 5_;&2 11 CEIETT and LCHEIHBHU will be pointing to

30 17 S the new curser address,

]] = Cld

:{,: ; __i'_: i“_'? E'_{, The curser will st3111 bBe off.

gg £ E-_i LR o R34=FEE5 = The new cursor address,

GR[ARIOCL E FIR1FTES

lwlole] = =1

H-68

Section B: Reference Material

4g2d 1HFUT R
[N F o
OQutput=s 3 strin ta R2E-RZ
1he CRI blnﬁl'gihn FIE-R3
raszt of tha lins.
mowiyE the aursor 1o
the b2arnnting of fhe
nax1 line and

displays the curser,

o o el

B B e P S
Ty

ELISTER

FAGES ,

12736 INFUT STACE

1] h
Saets the CRT to
page Zi1z2ze FS or to
paga sizge X4 (zame : =S
a% the PAGESITIE ODUTFUT STALCK
Statement s

Rrz----

decinal Y08 bytes)

fu

femptigd

OUTBTR
CRT

FAGES.
ZRT

=)
1 | |

S| [l (01 B o

alx
FAER

a8

PAGES1
CRT

Section 8: Reference Material

PAGESZ
CRT

PARSER

f 11 mo efrrors ocour, the parsed. Tine will
PARSE have been edited into the program 1fF &
was a pragram ltne, al=e 11 will be

betwean: NXTHEM and SAMPTE,

— [
&
H

Sl) O o a) [n=t
L8 LN L LR L L

g

Gadl o) Cad el a) a3 U

W3 I 1 o (R

=y U e oaf [0 == T
[X =Rl -
o Oy LA s) [e =
= Oy LN a) T
O o O O P O

||~ Iy L0 s i) [

IHFUT STACE COMTENTS:

IReturns

ATH
MATH e

ftubatavar
Rl1Z———=
| 2.131sEzé52499

QUTPUT STHACT COMTENTS

Pl sy dvar s
Pl 3414155285353 LE—byrecs

Section 8:

Reference Material

Hame [BPLIST .
Rddress This rourtine will lbaisgt the BASIC mrogaram P
FEom & Romjizh It checks the RiZ2 stack for optional [is1 PRINT
Same az 1he PLIST parametaers (line numbers) bu comparing
command R12-R13 with the tap ai =tick, 4, be
sure They'rMe equal 1§ uwow don't push ang
Farameters an the stack, or that thau're
equal before wou push one ar Twa
ParFrsmetlars . ¢Tha parameters woudld be
tagged-1ntegers of (laating-potnt numbsars,
The listing goes to the FRLIHTER 1% device
] 3 I-%
18 | 13 WERE EF
28 23 24 25 26 -27
38 33 34 35 36 37
48 43 44 45 46 47 [
58 334 54 55 56 57
68 63 64 &5 66 &7
P v 74 75 76 77
] | E [STIFTRIP TR
[T =T
PLOT, PLOT.
G4652 THPUT STRACHK CONTENTS
" e < | CRT
Runiine code for 1he A-walue €8 bures?}
BRZIC =tatement Y=value (B bytes
DIE____
PLOT =, u 3 , 2 !
QUTFLUT STACK CODHTEHNTS
fCemptdl
Rle———=
g 1 2 3 ENEEEEN
NEIFWINEE] 1< 15 17
28 21 22 23 24 23 26 27
2@ 21 32 33 34 35 36 37
48 41 42 43 44 45 48 47
58 51 52 52 54 55 56 57
6@ 61 62 62 64 65 656 &7
e Pl P2 o FE P4OPS P P
POS.
INPUT STACE COMTENTE
: Ramisb IR MISC.
IReturns a wvalue which Length af Aaryg 3 by
1's the poesitian in Addres=ss of arg 3 by
lene string af = Length of ara ‘2 ou
fecand =21ring. This Rddréesz of arg L3 by
iz the rUntiae sode Fl2----
for ThHe suystem = .
function POS DUTPUT STHCE CONTEMTS
Pesitlon of ztring B in trina R
Rig~~== {8 buyres
HOTE Foesttion walue will be & af strine B
does not exist i1n sirina #f.

Section

PRARRS
DIsC

PRARR,
DIisc

PRORVR
PRINT

B-72

3]

Reference Material

FEARKL i
7A7IA
EFLE Fon st Bl

INPUT STACK COMTEMNTS

Prints an entire Abs. address of first elemant of
string arrad 1o a the array € bytess
dzta Tole BUFEHET fib's, address of 1the name of the
varizble 3 butesd
Haader bute of wvariable tl byial
Rlg~-==53
OUTPUT STRCE CONTENTS
Comp 1yl
2 1z 3 EEIEE e
EEIEAEFEINE 14 15
20 2Ei23 2425
30 3233 34 35) i Bef e o HEFR
i 42 a3 4 45 HOTE! Refer to HSFENT .
50 52 53 5455
50 B3 &3 64 ES
T TETI T4.7F
O R DE| E TIFT T
Lol (ool - | U
MHEme PEAER
Addr TA167 IHNPUT STRACK COMTENTS
F & zzo EEREAS
Printes an entire Abs. address of first element of
fnumeéric arrfay 1Ato a the array LF butes)
data file bBuffer, Abs, address of the name of the
wariable (3 butesd
Hoader bute of Yaritable il byrel
Rig—=—=3
QUTPUT STRCK CONTENTS
Coamp Tty
Rl2—===}
MOTE: Rafer 1o HSPRENT.,

B

routima,
ternal

the printer

= 1=
var routinae. Itz
to the OQUTSTR
but for an
LR,

I
g

o Pl e g

bt L B B []

== B
= 0 L e Cad oY

| o O O i

[HFUT REGLSTER EONTENTS
R2Z&5-R27 = HAddress of first charactet
af oulput bBulVer here 1Thse
First charsciar is at the
lowest addresso
ESE-EZY = HNHumber of bytes 1t¢ be output,

Section 8:

Em
EH

" T LN e 2 T
Bl o @ o

= T LN ol [0

Terminaztes 3 print 1
& daty
rogtime mesa

Em
im

Cad L e L al o) (R0

Reference Material

File bBuffer,

of & S|P IWS
1o PRHURN
STE . or

=] T L o af [0
T i P
O L0 L G P

o e o R

O 0 (T O O

e[| = 0 1) ol W) [
| C

=1 s LA e Gl P

Fed ar

up SCTEHP =
L CofM1Talns 1 he

ant PRINTER 15

ually uszed proar to
Iling DEY1Z,

codeg . 't 1=

o]

[=)o SR Lafrio e
M= o o

|l

FELINE

TlE4t DI &P

0 [Ty | cer
Dumps &: Thee the before
FRINT buffer or the
DIEP buffer.

the select code and buffer

FREGL.
DISC

PRINT.
PRINT

PRLINE
PRINT

Section

PRNTH.
PRINT

PRMHUM.
DIsC

PRETR.
bISC

8

Reference Material

Hame FEHTFE

Rddress rSe3l

Rom # 1 [FTEr v |
Famtim code | or
FEINTEER ‘IS =t

aramant

fhe

fC8-byte=s)

IMPUT STACK COMNTENTS
Th" Selact code (=Bt as)
dptional lime lenath
Rid———-%

OUTEUT "STRCE CONTENTS

et ki

Fig-—--=-7
Hame
Rddress IHFUT STRACK COHTENTS
Fom #
PrantsE Aurer i Yalue 1o be printad (B buytes)
value to 5 data Lle Rigi—c—3
Buf §ei
AQUFPUT STALCK CONTENTS
emptul
L
HOTE: Refar ta HSPRENT

B

[l = O L) B Gl S

0\ T3 €7y O
O L0 1 £ (I
TR -

THPUT STACK CONTENTS
Lamgth of =string
Bddraess of 21fi1nmg

Rt

OUTPUT STACE COMTENTS

Lemp iyl
Rld=——=3
MOTE: RPafapr to HASPEMNT

La b
=g =
[t
it
s

e

Section B: Reference Material

EHADLG | RﬂDlB
4402 ITHPUT STACK COMTENTS
o ETEEE MATH
Funtime caode {ar E i beares-wvzlue bButas
detem function OTRE Bhaw==—3
Conwvarts dearees r1a OUTFUT STALCY LCONTENTS
radyans. 3
FEadyanz reswel: B-butas)
o e
OCUTFUT REGISTER COMTENTS
I = L ey FdB-Fa7 = Lopy of rezul?l
1a[15]16
2425126
34 35 36
44 45 45
54 55 56
64 65 6
¥4 75
ISTIPT
K] S | |
ERD RAD.
E226] | The actus]l cods LIs
e« | MATH
Puts the computar in DEG . LOE RIc.=30L
radTans: made Tar STODREG STRO E#.=0RG
mIth oFsrations FETH
BYT 241
FfD CLE EI&
JP STOORG
EYT 241
GRAD CLB F3Ic
OCE R3IE
IF STOORG

Sl taifroge | o=

F IS PR e S

|

IHPUT STACK CONTENTS

Feads an =sntire fibs=.

strimg array (rom a tha arraw
data file buffer.into fibs. address of
a string array wariable
vartable aresa Betachr, Bote- ol

RlE-—==1

OUTPUT STHCE CONTENTS

HROTE: Refer 10 HSFREHNT,

vartable

RDARRS
BISC

address of First element of
I

the namse of the

B-75

Section

8: Reference Material

LT d IHPUT STAC TE
= N T S5TAC COMTENTS
DISC 2 oM
Feads am entire Fls address of Tirst elenant of
frumartEe arcay From a . The array (3 bytesd
data File buffer 1hte Abs. address of the name of the
a numeric array “ariable CF butes)
varitzble ares Header byte of wariable il butel
R12Z o
OUTFUT STRACE CONTENTS
Canp gl
- Rl2====j
1 2z = ENEEGE
11112013 EREN | - |
21 22 23 24 295 26
1 22 23T 34 3% 2
; _;f‘; iz E: 1‘:__’ _;:E HOTE: Rafar to HSPRNT
2 43 5 ¢
51 S2 53 54 55 56
6l 62 E3 64 65 £6
7L 3 74 75 76
REDNUM . FOHUM
BFSB3 THFUT STRACE COHTENTS
DISC Jzn [RTETE v |
a number from a Ab= addrass of wariable wvalus
buffer nta €3].'-'\-_I'I*_';_l
2 ares Ab= sddraeszz of the name of tThea
varak (3 butes)
Header bute o yvariablae Ll Byred
El2——==3
OUTFHT STACE CONTENTS
[RFEY TH =)
(R) i —
IEIEINENE (4 15§
28 21 22 23 24 25 26
= = I 2 L
;g _3} 35 43 44 3:;‘ jﬁ HOTE: Refer to ASPRNT.
58 51 52 53 54 =% Bg
&0 61 62 63 64 63 BB
YR 71 V& 73 74 7S 7Fé
TRIAE T
RODSTR.
DI%{: IHNFUT STHRCKE COMTEHRTS
.
Ab=s, addrezz of nama (3 Bytaz)
Header of wariable il batrel
Hax Fength of string variable araea
(2 byres]
Abs address of fipst buta of =tring
ariabla (3 byres)
MHax [fanaih awailable 1o store into
(2 Buytmsd
Ab=s address of first buate 1o st1orme
into 3 buytes?
12 : LE
EXREER M OUTFUT STACH CONTEMTS
b n
51 52 45 L
= j MOTE: Refer io HSPRHNT.
T1
|

E-76

Section B: Reference Material

Hama FERD READ,
Address 6221 INPUT STRCKE CONTEHNTS i
Ram # EEllron is0 Rl DISC
tats tha file print Top of stack-3 Buffer number (8 butes)
pointers 1o tha Deptronal record & (8 buytes)
appropriale file Rra=—==3
buffer, Part of the
statemaent
READH® 1 OQUTFUT STRCE COHTEHNTS
Cempiyl
fil 2=}
HOTE: Refer 1o HSPRNT,
3E
45
56
=
[[TE
OR|AR|DC]| E
Lol Tulold]
FEFHUN REFNUM
2,538 ITHPUT CONDITIONS n
Rom 5] o PJE'\RSE
Parses 5 gsinpls Bla-R11 = Poinier 1o 1npul sfreéan
numeric ar array R14 = Current token
virtteble: &% & E g el Hewt character
variaole rtoken. A
SCAN :ust have been FTRZ = Bointer Yol Qutpul S1rean
date Before calling, 2 X °
€This routine changes QUTRUT CONDITIONS
faich variable 1okens
[and 2 tmia =tare ERp. 1§ =muccessful
robkens 2 and 22,3 E=f 1{ udnsuccassfu
i
4 1
a1
o 4
5
B
FELHEM] RELMEM
b rarord HMOTE: The suyustem uses the RAR location
Romish known as RAEH 1o keep track of the amoum! MISC.
This® couTyAe will of memory currently reserved,
release all tewporary
memord that was
reserfrved by calling
(RESMEM,
g |1 [Z [T4 T5 v
=] 1281401 1
2821 2502 2
36131 3213
$0]4 IERRER
N 53
oHl6 63
rels] 73
DE[ARTD
ol u

Section B: Reference Material

REM1D _
MATH ITHPUT STACK CONTENTS
Faeturns the remainder I yalun (B-butas)
RITOCR, ¥ I palus (E-buyrtea)
EiLz- -
=w=v 4 EP o
DUTPUT STALE COHNTENTS
Famainder CH-byres
E12 -
RESET.
i Call thils routine Wwith 3 *“J5B =' orF a
MISC. N ROHJSE' instruction, the sawme as
anu ather routine, tlt daésn'1! mess up
the FE&E stack,)
Fafar to the duner's Mzsnual to Find sut
uhat FESET does to the computer memord and
status
12 13
e 23
J2 33
42 43
52 53
52 563
7e 73
; 1L]
(ol ofa |
RESMEM RESHEN
21741 INFUT REGISTER CDHTENTS
MISC. o CETFETE
Reserves temporary RE55-R37 = Humber of butes 1o be reserved.
socratchpad memoru, rean o
{I1 gets releg=zed at ODUTFPUT RELGISTER COWTENTS
the end. of each line I -
of & BASIC prooram F33-R3I7 = Number of bBytes roserved Csame
and a3t each B sign . . 85 1nput)
-1._-|_'\nc -,:cr._-.-.;.-\.n:n.rl R&ES-ReT = Addrezsz of highest! bule + 1
Statementsly, 0
HNETE
; - o E=0 1f memory was reserved 0K,
!;'_b. ':'1"""':'?,_., ‘iq ?; T ? E#0 it rhare uke &m arrsr CHEH DUED,
=] =] 3 P A
"-'_:E ij & —‘?j?': Ej'; ?E %E == The addre that 1= raturned in FES 1=
iold1delaalaalasTacTs™ sugh that the Following code will =zrorae
ERTE 1 55 .51‘ T ;\IiEE %7 &2 byte inte 1he highest addresssd
SR SIEEIrT] - = location of the bleck reserved:
17117 3
.—._f'.!:'!_r._i__]_ - 2l73[74 5THD R&5,=PTR2
URIARTOCT E[STIPTRIPTRZ CTED R3Ie =pTE=
Dl ulEelulol ="1"-

8-78

Section B: Reference Material

RETRHIL

- Thea actuyal code far this rouline 1=
. CRT
Uattz yrmtil the CET EETEHI ODFF k21
conmireller 13 1n a3 FISFLY LODBOD R#. 5 IGET CRT STATUS
Iretraca psriod ' I'GET RETEACE BIT
LITE. . DTSF- TEAE
FTH IELSE FETUREN

Thizs rodting would be used when manusllyg
Sxitchina CRT modes (ALPHASGRAFPHILS
} iy

BELANEED S LUNELANEED R I+ wauw ;l.;'.icr.
1in thse middle of a dizelay period, wou
mad Qa1 an wglua Flash.,

afraltafra

Leg] (i 2% Lol (] ot 18]

[RA] LE%)

RND1@

INPUT STACK CONTENTS
MATH

Faturns tha next Cwhatever)

pseudo-random number Ei2-——==
3 walue baiwsesn @ S RS . -
And E) OUTFUT STACKE CORTENTS
twhatever)
Freudo-randaom number {(S-butes)

B e N b da (RS

Py fare | 0T
Tl

W e [

e LN e L] [RE] B2
A e g B B

L S

i Oy O

S| T LN o [

(e [B5

|
Jnl

— | ENDIZ.

INFUT STRCE CONTENTS

MATH
Funtime code for fhe Top of stack-» Optional RAMDONIZE walue
RANDOHATIZIE statement, (8 bByltes2
Fla---=1%
OUTFUT STACK CONTERTS
Camp iyl
RiZ2———-%
HOTE: [f mo parameter 1= passed 1o 1his
B = routing tThen the contents of RIZ anmnd the
E’ﬂ_ contents aof the top of =tack mugt Bée equdl
T I¥ a parameter is passed then RIZ must have |
— e been stored inte the top of stack before
ac the parameter was pushed onto the stach,
In ather words, the top of stack must be
: polnting to The First byte of the
= Farameter,

8-79

Section

ROMINT
MIGC.

ROMJEE
MISC,

ROMRTH
MISC.

B: Reference Material

Name FOMIMI
Address THEUT COMDITIONS
FEom M
Calls the INIT ROAFL = FReason Ter tha call:
routinées an all af
the bant-zalectabls @ Power on
ROM=s and all =f the I Rexad
bimary prograns, z EZZSth
4 Run,lmit
S Load
& Stop,Pause
7 Chain
o 18 Rllocate class 356
i i1 De-allocate class »56
i 12 Da-campile class 56
=i 13 Program halt on errar
s
48 NOTE: ROHINI Talls through into BPINT.
28 Binard programs must insure that FO doas
Eg not get destiroyed durina their 1NIT
ik roglthe as RO 15 used as a couniter bu
BEFINL,
Namea RORJSE INFUT CONDOITIONS
Address B2 Call= ro ROMJSE must be Tike this
JSB =RONJEE
Usad for callimg a DEF routineg name
routine im oa bank- EYT rom#t of dezstimation routlne
selec v ab s BOH ROMNJSH will use the RTN address {on the
taddress range of BE =tsclk from the 'JSR =RONJSE'D to fetoh
GERAE to FPATTI the addraess and rom# dJou want to call.,
Hhen coantrol returns, it M1llxb$ to Pwu
P T 1 next inistruction afiter 1the 'BY rome
EGL;?TEEHEU{ikT DUTPUT CORDITIONS
LPU register uwsage | The first four bute=s of ERTENE are
AT armation destroded by RONJSE, The DRF=65 and the
T T - - 3 - AEF=0 whan tha destinaiion routine 15
T A M T reached, Hhen control returns from
:U E == 13 14 i" EOMJSE to wour callimg reutine, ORP,RRFP,
fa 5 &%iﬁ_éiﬂa? E.ztatru=z, 0CH,and the ENC PTRs are set
"U':‘ B e sccordine toe 1he rowtinpe thar was called,
481s e e j" Tt Fa-F1l are saved on the RS& stack along
LR RS- R DT b wtih the nusber of the ROA that wasz
o E E‘é GEES E"l' El‘-‘ selected whern the eall was initiated.
?B_;, h;'j_ignL%. They are reztored before EQAJISE returns
GOF|RE|DC] E [STIFTR Other registers are desiroyed accarding
[l =l el *x] ¥ to the routine 1hat wses called,
EEEEi!’HI ROMETH
E207 The actual code Ffor EINETH 1s5:
a H
Rezelacts BEON B, thaen ROTIETH CLE RO i
doe= 3 RTH, Userd by STED RO, =RSELEC
bank-zelectable RIN:= RTH
that ndad 14 raetuarn
to the syustem, bul
neesd 1o have FOH &
selected (such a5 a1
Farsa time:
lﬂ.! f -2 - T
Pl 2] 1%
| L A
ENEEE EE
0 R B
Sols[5=]63
[=15) 62l6d
T ~ Fai!
i o E

Section 8: Reference Material

[IHFLT STACKE TONTEHWTES
A-walus (g butes)
b '\.-.:_lu.-: (0 bytex)
RIE====
QUTPUT STHCE CONTEHNTS
Compbigd
Riz———=2
28
48
58
68
a3
ESTREL
223446 [HPUWUT STHCE CONTENTS
i i BN oo isb IR
Festores some CPU
registars from the
Fe =z1ack To be uszec
tn conjunotion with
SAVREG
OQUTPUT STHCK COHTENTS
ftuharTeyer
R&-——~—
[3] 1 i
1af1if12]t3]54
jzRizitealazlad
TN ERE T
4R[41[42]43]44
TRIS1IiSZ |55 |54
aBleliel|a3|6q
1 I Al N
OR|AR[OC] E[ST|FTRI|
[Fal e =1 -Juw] = | - 1]
InPUT CORDITIONS
d The CFH must el
Used by EOHz perform The laz1 tuwa B
= checksum an 'raadrlesse b=
thamrelwas to inzure USSR BN R
that theg haver 't RF2-R33. = Base address of rom Cithils Wi
ahng badg, el be GDOAG for banb-zalectable romps)
< ' QUTFUT CONDITIGHS
Dpom @=11 1he Zare flag 1= st o the
chacksum was good, =lsa 1t 15 oleared
The sctual zode for BEUNGE b= 4)
FELRat Lbh R34,=277.817 Laks2 o+ 01
= O - I T O s L Ll e
; e A | =t L= ' g1 PO 6, +R32
Lot tZ|iS|lalio|ie|ly REun AH:{Upiit_;:;E
2al2itzziazlzalzsizelay DEH B34
EERERN == 23 34 35 36 27 JHZ REUR
3 41 42 43 44 45 45 47 ADH Fd4s,Pad
S5al51]52]53]|54]|55|56]57 HEM Fae
cblollcr|63|GA|es|aa|6T EAME R4, R3Z
: el 3 z
reRlF1IiFE]lr3lvd P~ Il BETH
| O =

RPLOT,
CRT

RS5TREG
MISC.

RSUMBE
MISC,

g8-81

Section

RTCURG
CRT

SAD1
CRT

8: RHeference Material

TCUR T
Feal
o CETEFETEE
Hoves the cursor: righd
one Tpace an the
distetay

(s o ses 1f L
3 off of tha
current pads of CRET
wanGry snd wraps 1t
araurnd 1 1 F doaes

INFUT CONDITIONS
The LCPU must bes in BIN mode at entru.

canrtain the current buate

The cursor must be off at entry ta call
19 DECURZ will do tharld,

OUTRUT CONDTTIONS

CRTEYT and CRTEAD will bHa gotnbing 1o
The new curgor ddres s

The curscr will 1111 ba affl

Hame

FTLURG
Addrass ;

P37ah

Rom # Romish Rl
Hoever 1he cursor
address riaht ona
zpaceE 1n ALFPHA memdary
ifessn'l chach to =)

ze
if it apes off of the
curfrent Fage of CRET
WEmar g, !

6] L =
161 12
2812 T2

] |] (R A

EHPELT CONDITIONS

The CFPU wmust be in BEIN mode ar entra,

CRETEBYT mus' gontasin the turrent bhdts
address
The cursor must be of F a1 2ntrd (3 call

to DECURZ will do thati

QUTPUT CONDITEONS

CETBYT -amd CRTERD will Ce pointling 1o
1tha new cursor address.

The cursor will =z13ll be off,

EF4=FF5 = The new cursor sddress,

addraess aof the LCRT
HLPHR displayg.

B te- = ld 19 t6]
AR R N - TR
coleil22l23|24]|25]|26[27
Elf 71| EHEEIE I EREE RS
A0 | 31 [d7 (43[4][4]dE]a7
ECl =R B B B
ed el uﬁ 64|64 (6|66 |67
ra|Fi|FPel73[T4|?EIVe]|R?

%M
I

STIFTEILIIFTRZ

ud
.
|
i
[}

INFUT REGISTER COMNTEMNTS
E34-R35 = NHew start! address
MOTE: The CPU must be in BIN mode before

calline SADL, The start address can only
be charged when in ALPHA mode; 11 315

fived at 18348 (octal) when in GRAFH wmodas.

The actual code for SAD] 151

SADL JSE =RETHHI
STHE R34.=CRTSAD0
STHR REZ4.=CRTRAN
RTH

Section 8:

Reference Material

SAVREG
2231i8a INFUT STRLCE TONTENTS
5]
Saves zsoma of the CPU 2 tuwhateyera
regiziers an the RE B =s==
= K. . sad i
Tragh. TTLDELYIEY N | ouTRUT STACK TOMTENTS
FAETREL
itwhatever)
R21-F31
E3bg=R37
PER-R&7
Big====x
CRNEEN = = R
iﬁ i =5 =k !% T B E = @ If mo problem
b el B R o E =1 [f @rror §lagaged:. stack was fTuwll
|2 EEIETNEEED e CHEN. OUE S
ERIE EIEER R
ELIETS SE|54 55|56
el |E1 el FER R T
|FHR|TL TE|v4]75
ODETHET T
Ul o] =
INPUT CONDITIONS
P20 = MNg=x1 ohar fram tRpUT =trezni
Eata 4 P T e R18-Kll = Polnter to Inpul strean
|-.1I-C!;| 1::5 rlir-;:u" ?'fnr':m I-'.I'TPI_-'T CONDITIONS
Fla-fll = Foilntver To Inpat STraan |
F13 = Me«t tolen
B2R 2 Hegxt chhrasiaf
F4n = Firstr characrer =sarched
R41-F42 = RDN# it Ra4z=R
of bilnary program base address
fif RazeEn
243 = ROH or bBinary progean Tokan #
= ar Type 1f warisble
e Fd44-Faa = It warilzble, R4A4-Fd5 = pointer
ég 1:|:| mame arnd F4c = lenath
o of nams
or Integer walue
=0 ar fecoendiry atrrilbutes faor
- functions
B47 = Tlass fprimary arirtbute’
4 |
LHFUT CONOITIONS |
Flo=Fl1 Foiméar g 1Apur S1rEeam
QUTRPUT CONDITIOGHNS
FlBE=FLl] = PFPointgr to input Tre&ah
EL3g = Hext rolban
Fz2@ = Hext charactaer
Fai = Firsr characrsr ssarched
Fd]-Fa2 = ROA# {i¢ Rdz=dl
G bimary progrse base sddrasss
Taf F4zZeG)H
F43 BEOW or binary progran 1oken N
gr Tups 1f warisbls
FEda=Fsdi I'f wariakls Fadd=F45 BElft &R
ta nawe ind R4 = langoth
of nama
or bnveasr walus
ap secondard atiributes for
functiohs
a7 = CDlass J{pritmard Ftrributeld

SAVREG
MISC.

SCAN
PARGE

SCAN+
PARSE

Section 8:

SCRAT.
MISC.

SCRDN
CRT

SCRUP
CRT

g-84

[3
Seratches memo
Same = 1heé BA
command SCRATLC

=
I

Rl Y S
o ooooom

= O O P Ll R s

e L S e

o= i U B Gl

Reference Material

Hame
Addra THRUT COMDITIONS
Seralls the ALPHA The CTFU mus: be in BIN mode av enitpryg,
fdisplay dowun one line
1
OUTFUT BEGISTER CONTENTS
R34-F35 = MNew =trart address
" 51
2]13
213
2|33
243
2153
2|63
2173
T3 CE
IHFUT CONDITIONS
Seralliz the ALPHA The CPU must be 1n BIH mode at entrud.,
digplag up one Iine.
DUTPFUT FEGISTEFR CONTENTS
F34-F3I5 = Hew =start =zddress,
g It [I3 J4 J5 T8
tolti|la|iF|1a4|IS|1E
Pl =i o =g P 2h
i B i
4ai41 3243]as]a5[ae
Sol51|52]153|54|55]|56
cljel|er|ad|ed |65 |66
ZolzilrelrI[vales
OR[ARJOC] E [ST[FIRIPTRE
Zal el B8] = o] — | =]

Section 8:

Reference Material

SEC1@

InpUT STACK CONTENTS

MATH
IBeturnos woalue iE-hyitas)
a b : B
QUTPUT STHCE CONTEMTS
SECCH » walua B-bygyias
Rl2====<
]
SEMICS
[NFUT STHRCKE CONTENTS
PHINT
2 Byrtez?
PFrints gtring ta Length of siring €2 :
1the pr|.r:1 ar ci:,5|:|,a|_. Rddress of ==tfing (X Butash
buffer. Sameo m¥: ELRwreee
FRINT *ABLC™: DUTPUT STACEKE COMTEHNITS
Camp gl
P12 >
a 1 HOTE: DISP. or PREINT must ke called
= prior itg calling SERICE 10 sat up the
':..;T? select code and buffer péinters.
LY &
B 3
o 4
B o
&
E] ?
Ok
I.
SEMLL . SEMIC.
Pl IHNFPUT STRCKE CONTEMTS Y Y
Romjish PRINT
Prints & Aumbor 1o Humber to bBe prifnted (B byte=i
the print aor display R1Z=—==3
buffar Same as
PRINT 34: OUTFUT STACK COHNTENTS
Cemp iyl
Bl Femea
HOTE ISP, ar PRINT, must! be called
prior to calling SENLC to set up the
seiect coda and bBuffer porfntérs,

885

Section

SEQNG
PARSE

SEQNDO+
PARSE

SET2410
MIsC.

8-86

B: Reference Material

NHame
Address THPUT COHNDITIONS
Rom #
SCANEs ard trias o Rig-R11 = Fointer to 1nput sftream
sr=e & life alk
R i I o sty FZa = He¥1 charsocrer
OUETFUT CONDIETIONS
If zygsoessFal:
Fls = t tolen
Ezn = t gharacter
F4O-F47 = =1 by SChRN
E#n
[+ unzucce=ssful then E=0
Hdl‘ne HDOe
Addr INFUT COMDITIONS
Rom N
Pushes out the FlB-FE1l = Fointer 19 LNPOY STCEEM
tncombna toben and Rid = Luyprant tolkan
1then SCANz z2nd parzzs R2t = Nex1 characiar
s lineg numbear RPN _
By S S e OUTFLUT COHNDITIONS
If successiul:
Fls = Hext1 rtaken
B2 = Hext character
R4@-R47 = Sat by SCAN
E#i
I¥ unsuccasszFul then E=0@
The actual code =33
[San immediata bresl
lbits {5 and im BLT SETZ4R PUTD B36, +26
LOB R36,.=240
OEB RI17,R36
FPOBD R36,-RE
RTH
g f1 2 J3 0% |% |& |7
left1lt2I 13141151 6l17
ALY O R] R T T
il EFR RS N = e
- 41 4243 EEIEEIE AR
S@[51152|3 S| A&|8TF
= R e N e
fIFalrilez o R A i il
(OR[AF[OC] E -_»TEF'TP]FTFE
6] & | == Fd =

Sectian B:

Reference Material

IMEUWT STHRCE

RpZ-——-

value

DUTFUT sSTACH

CONTENTS

(E-Bhutas

CONTENTS

¥% walus (R-bhuytess

SIN1E

G434:
BN Romisb EEN
Eeturns 1he SITHOX

O LNl o]

L0 B G o SR
ficn cn ' en o on {0
Bl =1 =0 =1 = =g =0 G

5|
Bl
]
I Lo |
=
A
I

COF] HE K
A 1=l 0 [w]u]

LHPUT STHLH

CONTENTS

voa e tB=byltez

RlE=---—1

QUIPUT 4TRC

COMTENTS

vl

S-Bwtems

Hame
Address

EF]

e Ll e | 1 s s

B LR B R — L
e e e da Ju FHEA

= s e e [SR

EHPUT STHCE

RL2----

QUTPUT STHL

SOF
ELZ

value

k

"

CONTEHTS

te8-buves)

COMTENTS

value

{3-butass

SCGNE
MATH

SIN1H
MATH

EDRE
MATH

Section 8: Reference Material

5T240+ mlsﬂ' | cvnaassins swuiv s
MIS{:' -.-Ij- .l'.\r ld— e acida ca ; B E

Setz immediate break ST24f+ CLE Fl6
kit S5 and T in R17 SETZ40 PUED R4
and =&t Fle 1 1} LOB R3&
tIdled ORE F17
FOBD RE&
ETH
| |
it I |2 + |5 &
[N] ats |
Telzilez calzslzelel]
1 N E R TR L T il
A8 41 |[4rlaalsd 4o daldr]
SHi51|52]52154(55156]5
[l Pl A S [
T el7alvaly
T
l

STBEEP Tt n BEEF lal
o 1R I's the same 35 wnen an arver
Mlbch ocours, or when the BEEF statéeméent 1S

csocuted with no parameters,

B 1 12 T3 T4 [5 [& [7

Y I I 2 T T I
8121 2223 | 2 [Fo 36|27
36 31 EEIESIREIRES 3 ki
ENIENEEEEIET S E S E e
L T e) Y e T B
EOlEl[62|ealaa |65 |6E 6T
ATl [valy2lrdl7alralrs
OR[AR[GC]

1l -1T=1-

STIPTRIIPTRZ|
6)

STOST Hame STOST
= ABddress [HPUT STACE CORTENTS
MISC. Rom #
Store s1ring 1 Ab=s. address of name {3 butes)
2 SArIng VARLABLE Header of variable (1 bBuyted
area. Haximum length of variable (2 butres)
Ab= address of First char (3 butres)
Hax lengih t1a s1ore into (2 bytas)
A= address to store into (3 butesl
Les af z1q1iha to be stored (2 bytaes)
Ab=s. address of string to be stored
RlEZ====% (3 butes)

OQUTPUT STRACK CONTENTS

CEmP Tyl
RYg===—3

NOTE: All but the length and address of
the strimg 1t ba stored wWwill bée supplied
by the sustem 1f You parse the string
variable using the parse routine STREEF.

-0
B
&
&

[

8-88

Section 8: Reference Material

Stores 2 numeric
walus 1nto a4 =imple
fibmertic oF NURaEric
arrad warlable

B 1

EEEEEINE]
2T

INPUT STRCK CONTENTS

fib s address of wvariablae 5 hutles)
Ab<s. saddress of name {3 butesi
Headoer af wariable (1 bwied

Value 10 be =tored (5 byTesl

i)

CUTPUT STACE CONTENT

g CemMp Tl
F2====i

HNOTE: All but the value to be stored will

ba suppliead bw 1he stem 1f “4oU parse
tho wvariable reference using the parse
rodtine REFNUN

STOSV
MISC.

3 qualed
string and then calls
SCAN,

INFUT CONDITIONS

ElB-R1l = Pointer Yo fhpUdl sStreasm
FE1l4 a MHawt taken
| pegs] = Mext character
R4E-847 = Sat W SCHAN
P-T = Polntar to outpul siream
ouT ITIONS
[guccessfu
Fl4 = Waxl 1&8Ken
FZ2R Méexi echarscter
FTF2 Fointer fo oultpigt o Bt -1]
Emp
1F wmsucazsidl
E=a

| ETRCON
PARSE

3
3
) f
SCAN=s and falls
throuah inhte STEEXF
(parfesz a =1r1ng
Enpr and
II
] = Bl I,
i] lall7
2llez|23 2al26i2 7T
EE N I EE N - T
|61 |E2 |63 ad
el |?2|73|74
GR|RE|DC] E |57

[0l o] ool -

[HPUT CONDITIDNS

PlB-Ril = Pointer to inpul =t1ream
E2D = He=1 ¢haraoter
GUTPUT COHDITIDME
I¥ =successiul:
Ela = Hext token
el = Mest charsctar
Fd@a=g47 = Sei1 bu SCTHEN
E#i

[unsuccessful then E=8

STREX+
PARSE

£-8%9

Section B:

Heference Material

STREXP
THFUT COMDITIONS
PARSE
3 string ElB-R1l = Fointer fto inPul stream
LaR AR FLd . = Currant Yaken
ton That will L = Nexi character
avantuszlly evaluats
._1:1...,. 't & “l:.ﬂ]._.c' DUTFLUT CONDITIONS
Firina walue If s e e s a1
F14 = Hext rolen
EZ2 = Hext character
EAR-F47 et by SCAN
E#G
I'd wnsucoessful then E=4
STRREF [ITC SIRREF
i Address 24458 [NFPUT CONDITIONS
PARSE ¢ [PTEETE ¢
iMpla ElB-RFll = Peointar ftp input streaw
T _:‘1...1 = MHa=1 Eea bham
izble mowe 2@ = He=t aharacten
Mot we FdB—R47 = Sar hu SCAHN
T = : 11 ro autpat SUCEan
cPpposed to tetching
the walus
= Hr:.l Folan
= Mot Frar e bear
= Polinter 1o odtput straawm
tHn
1f wunsyueccocgfal:
E=0[
auBi@
] INFUT REGLISTER CONTENTS
MATH 7 CETEERN
rwe resl F-'*1E?-F"l=:-_ = Feal value A (H=bytes)
oEinT R38-R57 = Real walue B (8-bytes)
ODUTFUT STACK CONTENTS
Fasult B-A (8-butes}
Rlo——==]
OUTFUT EREGISTER CONTENTS
T 15 T8 17 FdB-RaA7 = Copy of result B-A
5 I
1al1al16ll.
EL]) =
= ITE TF it
E: :? :i HOTE:1 The fwo pumbers must be in flozting-
=4 :3 ,:.:‘_. Foint format or the result will be
= '_'é 'r:::. unbrcwn ., The CPU mug1l Be tr BCD mode when
D when ADDLA 15 called or the result will be

unkrdwn,

8-98

Section 8:

Reference Material

LHPUT STACK COMTENTS
Syubiracts one réeal ar Real or tagaoed-integer A (B-bylas)
tagged-1nteger numbar Real or tagged-integer B CE-bytres:
from -a second real or Big——==7
lapgad=-intéeqger 2
number . - OUTPUT STRCKE CONTENTS
EThis i= the main ~
runtime entry polnt ! Fesult R-BE {(Z-hutes}
for the sustem Rlg-—--
CRACALVE flbdis QUTEUT FEGISTER COMTENTS
'1". R48-R4? = Copy of the result
: HOTE: The reswult mad be elther 3 resl or
i a tzaged-lLnteger numbear, Tha CPU must be
in BCP mode bafore callling SUBEOL
[NFUT STACE CONTEHRTS
Lowalus E-hutesd
BP——==
OUTFUT STACKE CONTENTS
TAHM valusa (B-hytres?
RIZ——=~
Name TIRE, .)
Address eaZ il FMFUT STACK CORTENTS
Rom # L5 ki
Funtime cods For the : ,__'_"_II'H“*.:'-' |
system fumctian TIFAE. FEl=
|
OUTEUT STACK CONTENTS |
tuhsteyer)
Time = PR
P11z
QUTFUT PEGISTEE COMTEMNTS
b 2 £ E] ':- ':- & I+ Fdd-F47T = Copy mf 1ime

O LA][RR
I) 1 T (R

SUBROI
MATH

TAN1G
MATH

TIME.
MIGC.

8-91

Section

TWOB
MATH

TWOR
MATH

TWORO1
MATH

8-92

8: Reference Material

FEam
Takes
afl tha
gonvyerrs
15-pit =
valyes

T
F12 stack and
them 1o

1A

1 D el uxlien]

IHPFUT STACK CONTENTS
Eeal or integer walue A (S-butesy
Raal or integer wvalue B {(8-butes)
RLE====3
OUTPUT S'-.'i'—i[.}. CONTENTE
Camptul
RipE=—==1
DUTREUT F‘gl_'-.[::,TEF’_ CONTEHTS
F2Ee-~mad = 15-bit siagned binary number o
Fds-Fa7 L5-B11 signed bimary frumber
FS%a-R5F = 15-bit1 =igned binary number
= = [S=bBi1 gianed binary rmumber:
HOTE: [f a walue 13 negative then 11 will
be Fréeperesentad as the twoa's compleméeénd af

the absolute value of tha original

5 araument C(that is a valueg of -1 wowld be
returnegd &2 gcral LIFTEFD
THOF
STaze EHFUT STACK CONTENTS
0 FTEFTE Feal or tagged-integer A (8-butes)
Tskes twun numbers oaff | Feal or tagged-integer B (8-bytes)
&f the B2 stact and Bl2——-=3
1f they'ra in thsa Sz :
t5aged-iniager fapmat | OCUTPUT STRACK CONTENTS
thed are convertaed 1o
the fleating point e L At
irgal Format, Rl2-———=>
CUTPUT REGIZSTER CONTEHWTS
FE48=-7 = RBReasal vaslue (B
RS8-7 = Feal wvwalue <RI
Fed-7 = Feal walus <B}
IHFUT STRCK CONTEMTS
Ram .
Takes two numbers off BEeal or tagged-:nteger A 4(S-butes)
6f tha R12 staeh_and Resl or 1sgged-integer B (8-hutes?
if beth ars taggaed- Rl2=—=-
integerrs returns tham N 2 . A -
a8 =uch elsa doses OUTPUT STACK CONTENTS
any nesdad conversion - o
GAd Freaturns them Borh — eap Ly
3z resal numbsers Lg====
OUTPUT REGISTER CONTENTS
‘4 T kRdB-7 = Feal aor 1agged-anregsr (BD
14 — RS6-7 = Faal or tasaed=inteagar (A
EE3E E = B if both numbers are ransl
; = 1 1f bBoth numbers ared 1htegers
&

Section B:

Reference Material

“=d

o (R 1 PR
| [
“J[l"ul_ﬂ-ll-'.-ll'\.'l'-'m

EI]IIH.. [
R

5
3
8
&
A3
&
E:

[f whsuccassful

E=8

OHEDT . UNEDS.,
Iga3 INFPUT STRCE COMHTENTS
¢ [TTREE MATH
Checks two sirinas E“Q“‘h Bl _slirEns 'ﬁé (2-butas
T Fria b Addre==s of strina ‘A’ {3-bytes
or inequality Lenath of strifnag 'R’ {Z2-butes
Addrezs oFf 2tring "B A=Fagt o
Blar-—==3
OUTPUT STACK CONTENTS
TruesFalse alue (B-buytesg)
Ri2---=%
? OUTPUY REGISTER CONTENTS
Eq RY@-RYY = Copu of fruesfalse value
45 i :)
Ly HOTE: The truesTalze vaslue 18 =8 1fF Talse,
P =1 1f true and 15 1n fFloating-polnt
o format,
ITHFPUT STACK CONTENTS UNEQ'
) MATH
r =tz f ers F A-walue (E-butaszs)
L:E;.'.Id[l:?gr.l.lmh.) 2F B-value ({E-bBuyutas)
RiI&———=7%
OUTFUT STACK CONTENTS
True-False walue (BE-byreso
RYg====3
NOTE: The truesfalse walue will slwaus be
B thgged=-integer and will be =1 tf true
and =68 if falssa
IHNFUT CONDITIOMNS UHQUGT
B ’ PARGE
Parses an unquoted R18-R11 = Fointer to inpui streaam
ztring. and then calls R4 = Haext token
SCAN, Unquorted B2 = Hext eharscfer
strings are FR49-R47 = Set bw SCAN
lErsinsgTed g 8 aemnhe PTREZ = Pointer o aulpu! zrtroam
iaz in 3 OATA =tate- OUTFUT CONDITIONS
mERLD
[f =ucecessful:
RBld = Hext foken
2za = Next character
PTREE = Polnter to COUtputr Straan
EREG

Section

UPCS.
MISC.

UPCUR.
CRT

UPCUERS
CRT

B-04

8;:

Reference Material

Name UPCs.
$142 [HPUT STHCE CONTEHTS
Lo i ¢ [TTEE
Runtime code Fofr the Lenath of argument siring (2 bytes)
system furnction UFCH _ Rddress of arqument string ©3 Dbyies!
and £t forées all REg==-—=%
aleha characters 1n 3
Ziring 19 uppar cace | OUTPUT STACE CANTENTS
Lemngih of regult string {2 byleées)
Address of result siring (2 butes)
Rlz----
2
12
B
== HOTE The length of the resultl siring will
L) be the zame a5 the lenath of the argument
g; Etring butl the addresses will be different.
&2
]
C
Hame HPTUE,
135363 IHFUT COMNDITIONS
5] H
Hoves tThe curfar up The LFPU must be in BIN mode 3t antra,
- i'me g tha P
:-;r:l‘EFI.l:- " = ALERh CRTEYT cofftain the current buyte
(Chegks to s=2& 1F 17t addr
qoes nlf of the
2 I g The cuUrsor must be re . at entry (3 ecall
currant paas of LRI SR Ear |-|i.1i‘-d-; e]
mamery and wraps 1t 3 = %
around tf 11 doas
B 11 3
A RER I OUTFUT CORDITIONS
=1 [32]3 3 ; e o
e SR ELECH R == - CETEYT and CRTBAD will be polntinag o
o EREE) Sajaniaed the new cursor address
5ol51](52(53]5a Eels
I:-'E:?-': :Jj e The cursor will 1911 be off,
IRIAE 5T REI4-R3I5 = The mew cursoer address
EEIEE
CUES i
Va3 INPUT CONDITIONS
e
Hove=s the curzmr Thne CPU mus? be inm BIN mode atv &ntrwo,
addréess up one linea
in ALPHR memory CRTEYT must gontain the current buis
Chogen ! T BRaEk 35 S5 addresz,
if 11 geez off af the
-'..'JFFEHPL:EEI; of LCRT The curser must?! be off at entry a zall
lmewmdary., to DECURZ will do thatvs,
QUTFUT CONDBTTIONS
B FRIRYT and CRTEARD will Be peindids o
T oAb iE }? the new ceursfor addrzzsz,
L 5132133 The curzor will z111] be off,
g6 3] [42]43
= o Ol . e
___22 =5 é:'_’: - RE4-R3E5 = The A€l curser sddress,
<3 i R il
OF[AF[OC] E |5
Y I e

Section 8:

Reference Material

: -
VaLs.
INPUT STACE CONMTEMNTS
MISC.
Buntime coda for the Humeric argumant LB-byte=s}
sy=t1am Function VALF Rigr-re=?
gnd 11 returns rhe o i 2
strina aquivalant of TUTPUT STACKE CONTENTS
a number
Lafpigih of tronyg CE-bytes
Addrzss of =iring 3-butes)
E1Z2
AUTPUT REGIS
ENERE SR .- .
R = = fAddrsa t 1T 1Mma
15 BEN :
23 26
35 36
45 48
35 96
6% 66
75 T8
. 1HIPTE 2
=1
VAL = VaL.
daaze THPUT STRACK CONTEHNTS
Romish MISC.
Runftime coda For 1hHae Lengih of string arqumen! 2 bytas
systen Function VAL flddfess of =21ring argument bytles
and 11t returns the Rl2-——==
|
Admart o qulvialent] . I . .
FhE cEAERE e rneRRy OUTFUT STRCE COMTEMTS
Hiudmer value LB bytltes
Rili2———=
1
1a 1
28 21
38 31
48 41
58 51
s@ 81
7A T
1H TAC TEHNT IIXD
EUT 5 Ck TOH HTS
MATH
calue g-byreso
3]l B-butes
kL2
OQUTFLT TR EONTEMNTS
5 1w B=byg
RbEs=

i“

e

O L e T

am
Ew

= 0 L0 e G T
O LA e G B

:
3

Section 8: Reference Material

ot IHNRUT REGISTER LCONTEMNTS
- M
MISC. P
Fillz a black of BE63-R&67 = Humber of bytes to filled.
gxlended memoryd with PTRZ = HAddress of 'F:F‘E'I_ word +1 ‘of
blanks tused bw 1he the ares 1o ba Tilled with
U, o Thd i e blanks (the highas1 address:
ing S1ring vartablesd this routine stores to PTRE-,
fllling from Highest address
to lowesta
OUTPUT REGISTER CONTEHNTS
RES-RET = 4
8 1% 19 12 14 ‘9 16 17 | = es= @ =
i@liiltelialialia|Ialliy Elea Hodress oy firsv Uand!#1,
LS_._::‘_]_ F‘% g._l.%:t_ 2526127
] E] ¥ - EX 1= £ HOTE: For fta1lling a Bleck of meémary (in
ég ; ;E_;: ;: gg %%“ﬁ? the lower &4k address space onlyd with
FCIE R AT I e o= ¢ blanks or zeroes, refer to IRONEN.
Tal7 7 o GiF7
s e
DR[ARIOC] E 15 F
s -1 -JTul - [=1
EROMEN viﬂe INFUT CONDOITIONS
ARddrezsz
MLSE: e T CF BIN
5 . B k=il he U must be 1n mode at eniry.
Salstitennet iy IR mesns e el wi TS dn R
chie Mt RSE-RS7 = Humber of butes 1o be Filled,
-) EI&E-R3I7 = First byte to be filled {(the
lowest addressed byte:l
HOTE: This routine will enly work in the
57 - = lower 64K addreass space, There 15 anciher
%-li..ncl-.é.ﬂlq...;!.x.%r.lé.ni.-..- Fautine called ZROEXH that will hlank-fill
] | &3 i, £ = .
_EEF = R A L ?if:i?:?i extended memoru but £t will not
EIEFNEEIERIETIERY =c 27 R 3
40]41/42143]44][45 il
BT 218315455
ERQ &1 E2 63 &4 EF
\releiivralr3[val v
(DRl ARIDCT E[STIFTR
[oElGEfOCT ETSTIETR

8-96

Section 8: Reference Material

8.4 Parsing Flow Diagrams

Main Parse Loop

PARSER P. PARS

H PARSIT
Y
i
Y

C.PARS
ANY
ERRORS
7

¥
SET
CALCULATOR
MODE

FARSING A PROGRAM LINE

|

END-OF-LINE
PROCESSING

LINE
DRIVER

8-97

Section 8: Reference Material

Parsing a Calculator Mode Statement

C.PARS

SET ERAN AND
ERAAL AND CLEAR
ERRORS

Y

RESET INPUT
POINTERS

END-OF-LINE
PAOCESSING

RESTOHAE
ORIGINAL EAROR

Y

8-98

Section 8:

Parsit

Routine

Reference Material

PARSIT

VARIABLE

#

COMMAND

Y

IMPLIED
LET TOKEN

¥y

FARSE
ROUTINE

PROCESS @
OR!

Section 8: Reference Material

8.5 Hook Flowcharts

CHIDLE

HETURN TO
ExECLOOM

RETUHM 10
ECHIFS

ATTUANTH
CHEDIT

METUNN TO
CHIDLE

hl—+

|HDOK WO
TAKEN;

WETURNTO
EXEC

RETURN TO
HCRITH

RETUNA T
CHEDT

METUNN TO
CHIDLE

no
L]

nOoMs
A0 NLTURN TO
AQUTINE momMisn

L e —

B-106

Section B: Reference Material
DCIDLE
LIST B5 PAGM
AOUTINE TRANSLATOR
Js8 J5B=
DECOM
J5B=
DCIDLE
T T T
' ' ! larem
| | | !
I I 1 JSB /
I—
(HDDK NDT I i
TAKEN) 1 T
IROM] PROGRAM
i ACQUTINE
1
|
I
|
1 JEB=
ADOMISE
SAVE RO-R1
ANDROMYE DF
CALLING ROM
J58=
AOM
ROUTINE

RETURMNTO LIST OR
TAANSLATE ROUTINE

RETURNTD
DECOM

RETURNTO
RDCIDLE

Hﬁ_h.

AETURN TO LIST OR
TRAMNSLATE ROUTIME

RETURN TO
DECOM

RETURMN TO
DCIDLE

RD
R

ROMA

RETURNTD
AOMJSE

B-1@1

Section B8: Reference Material

ECIrS

HooKk nat |
|

TAKEN]|

\

8-1p2

IER
T
| (AP M) I8
|
I AINARY
TR PROGAAM
i AROUTINE
|
JEB
ROMISE
SAVE RT-R1
AND ADMeOF
CALLING AOM
506
ROM
ROUTINE

RETURMNTO
EXEC

RETURK TO
XCHITE

AETUAN TO
1nse

{11 P

HETUmN T
EXEC

HETWRANTO
EOBITS

RETUNNTD
[sb-1

RO
R1

A=

RETURMN TD
ROMJIERA

Section B: Heference Material

I0TRFC

DHY1Z

Y

PFRADAYA

SANE
VECTOR CODE
0,241
SANE
SCTEMP
SANE
COUNT B35}
SAVE
ADDAAZE
J5B
WECTR
EAVE
RI4-AIE
JE
IDHOKZ
N
L J50
IOTAFC

JEH-

HETURMNTO
ORI Z

YECTOR CODE

SCTEMP

A6
A37

H2E
R27

HETURN TO
CRWIZ.

Az
WIE

EINAHY
PRCGAAM
HOUTINE

RETURKN TD
VECTH

JE8

I

RETUEN TO
IOHOKE D

RETURN TD
IQTAFC

HOMIERN

Y

SAVEADA
AND ROMS

AEH
—_—

Ad
A1

ROMa

ACM
ROUTINE

AETURNTO
HOMISE

R& -

5-103

Section B: Heference Material

/

TRODZ2A
COpE
I JSB= [VECTOR)
IFOCARD
HARDWARE =
INTEARUPT |
| IRGz0
|
a Y
* SAD
1] |
1 | |
! | \npGwmyase-
y I i 1 JSE=
jHOOK | }
NOT |
TAKEN)
| AOMJER
|
(ROM) +
: SAVE RO-A1
I AND CALLING
I ROM#
I
JER=
I
|
| ROM
I AQUTINE
| v
I
I
|
I ise-

g-1d4

¥

BINARY
PROGRAM
ROUTINE

RETURN TO
CoDE

SAD

RETURN TO
IRQZOD

RO
R1

ROME

RETURNTO
ROM.ISH

RETURN TO
CODE

:

SAD

RETURN TO
IRQ20

B e

Section 8: Reference Material

KYIDLE

HEYADARD JBB INECTORI
HARLYWANE =
INTERRUPT

OO 5T
TAKEMN]

J5R

EYIDLE

mnosanE

LaAvERDRY
ANDCALLING
AOMA

ArTURAN T
CODE

RETURNTO
EEYSRY

RETUAN TO
E¥IDEL

HETWAN T
CODE

RETURN TD
RE¥SAY

NETURNTO
WYLOLE

an
Al

noME

AETUNTS
mOosEn

A —

B-105

Section 8:

PRSIDL

B-1d6

Reference Material

XCEITS

PARSER

IHDOE NOT
TAKEN!

BAGH|

J5H
AREIDL ’
| | T
I |
|] I NEST
S |
I
|
| BINARY PAOGAAM
HOUTINE
|
| ¢
|
|
| JsB- |ROwM|
AOMJISE
SAVERO-AY
& AOME
J5H=
AOM
ROUTINE

RETURK TO
EXEC LOOP

RETURN TO
ECAITS

AETURMN TO
PARSER

RETUAN TO
FRSIDL

RETURN TO
EXEC

BETUNN T0
KCBITS

RETURN TO
PARSER

RLTURN TO
FRSID

Rl
Al

LM

AETUAMNTD
ROMIER

Section 8: Reference Material

EMIDLE

EXEC

THOOE ROTTAKEN|

/

ABIDLE
T T T
1
| ' |
|
" JROM) ! 155
|
|
| RINARY
i FRAOGRAM
| HOUTINE
|
|
|
|
|
i is8=
ROMJISE
SAVES RO-R1

ANDROME OF
CALLING AOM

J5B

RO
ROUTINE

AETURMNTO
EXEC LOGIP

AETLUAM T
RMICLE

.

RETURMNTOQ
EXEC

AETURNTD
RMIDLE

R
H1

ROMA

AETURAMN TO
HOMISEH

8-1@7

Section 8:

SEPAR® and SPAR]

Y

Reference Material

JEB={VECTOR}

CODE
SPECIAL
HARDMWARE
INTERRUPT

g-1@8

I
'.
Vo

Y

SPARD[ORT)

I
i
S |

HOOK NOT
TAKEM

JS5B= |BPOM]

BINARY
PROGRAM

L]

54D

Y

S5AVE
REGISTERS

Y

ETC.

I
I
1
|
!
!
[
|
|
i
|
|
|
:
I
Y

saD

JEB-

=

Y

ROMJSE

Y

SAVE RO-R1
AND CALLING
ROM#

[r

Y

ROM
ROUTINE

:

RETURMNTO
CODE

RETURN TD
SPARDIORT)

A T

RETUAN TO
CODE

5A0

AETURN TO
SPARO|ORT]

Al
A1

ROM=

RETURNTO
ROMJSH

] —

Section 8:

Reference Material

SYSTEM RUNTIME TABLE

AOUTINE NAME - TOKEN ATTRIBUTES
BTAER DEF ERRODRX ERROR 0 0,44
[NEF FTSVL SNV 1 0.1
BEF SVADA SAaY Z 01
DEF FTSTL STRVAR 3 0.1
DEFICONST HEAL CONST 4 0.4
DEF SCONST "OUOTED STR 5 0.5
DEF SCONST UNOULOT STR i 0.5
OEF STOST 5T0. 5TRING 7 0.31
OEF 5TOSY STORE 5V 0 0,31
DEF AVADRT 1-DIM ADR 11 0.3z
OEF AVADRZ 2-0IM ADR 12 0.3z
OEF AVvALT 1-DiM VALUE 13 0.32
OEF AVVALZ 2-DIM VALUE 14 0.32
DEF ERROAX CARRIAGE ATN 15 0.44
DEF GORTH ENOSTMT 16 0o
OEF ERROAX OLUNRY 17 044
DEF ERROAX ounmy 20 0,44
OEF FTADA SHY ADR 21 03
DEF SVADR+ SAV ADR 22 0.3
DEF FTATLS SAVE STR 23 0.3
DEF STOSVM MULTISTO, 24 0,43
DEF STOSTM MULTI 5TO$ 25 0,43
DEF-FNCAL FUNCTION CL 26 0.6
DEF FMCALS STRFUNCCL 27 0.6
DEF JTRUE® JMP TRUE 30 0.7
DEF ERRDRE ILLEGAL END 31 0,44
DEF INTCON ~ INT CONST 3 0.2
OEF JEALSR JMP FALSE 33 0.1
DEF JMPREL JMP REL 14 .26
DEF 5UBST1 1 OIM SUBET 35 0,34
OEF 5UBSTZ Z OIM BUBST 36 0,34
DEF-EJMP# ELSE J# 37 0.25
OEF FTSTA STRING ARAY an 0.3
DEF JMPLB THEN LABEL 4] 0.207
DEF PHARAY Amay PRINT# 42 0.36
DEF EJMPLB ELSE LABEL 43 0,225
OEF REARAY Arrey AEADH 44 044
OEF ERRORX 45 0,44
DEF CONCA. & CONCAT 46 .53
OEF NOP4T, 1 47 042
OEF ERRORX { 50 0,44
DEF ERRORX) 51 0,44
DEF MPYRDI ~ 52 12,51
DEF AODROI 63 7,51
OEF EARORX i id .44
OEF SURROI — DIADIC] e
OEF ERRORX a6 0.44
DEF DIv2 / &7 12,51
OEF YTX5 s G0 14,51
DEF UNEQS. # B1 6,53
DEF LEDQS, <= fi2 653
DEF GEDS. = B3 .53

B-149

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF UNEQS. < 64 £,53
DEF E0S. = 65 6,53
DEF GRS, % 66 5,53
OEF LTS < 67 £,53
OEF CHSROI — MONADIC 70 1,50
DEF UNEQ. ! n 5,51
DEF LEQ. <= 12 6,51
OEF GEQ. = 73 B51
OEF UNED. <> 74 551
OEF ED = 75 6,51
DEF GR. o 16 5,51
OEF LT. & 77 B.51
OEF ATSIGN @ 100 0.47
OEF ONERR. 0N ERROA 101 0,241
OEF OFFER. OFF ERAOA 102 0,241
OEF ONKEY. ONKEYs 103 0,241
DEF OFKEY OFF KEY # 104 0,241
DEF AUTO. AUTO 105 0,141
OEF BEEP. BEEP 106 0,241
OEF CLEAR CLEAR 107 0,241
OEF CONTI CONT 110 0,141
OEF ONTIM. ONTIMERY m 0,241
OEE INIT INIT 12 0,141
OEF LIST LIST 113 0,241
OEF BPLOT BPLOT 114 0,241
OEF STIME SETTIME 115 0,241
OEF CHAIN CHAIN 116 0,241
OEF SECUR, SECURE ni 0,241
OEF READH, READ# 120 0,241
DEF AENAM. RENAME 121 0.241
OEF ALPHA. ALPHA 122 0,241
OEF CAT. CAT IS 123 0.241
OEF AUN AUN 124 0,141
OEF DEG OEG 125 0.241
OEF DISP nisp 176 0,241
DEF GCLR GCLEAR 127 0,241
OEF SCAAT, SCRATCH 130 0,141
OEF DEFA+. DEFAULT ON 131 0,241
OEF JMPLN# GOTO 132 0,210
DEF JMPSUB GOSUB 133 0.210
OEF PRNT#. PRINT & 134 0,241
DEF GRAD, GRAD 136 0.241
DEF GRAPH, GRAPH 136 0.241
DEF INPUT INPUT 137 0,241
DEF IDRAW. IORAW 140 0,241
DEF FNLET LET FN 141 0,217
DEF NOP LET 142 0,241
DEF PRALL. PRINT ALL 143 0,241
DEF CAT. CAT 144 0,241
DEF DRAW DRAW 145 0,241
DEF ON. ON 146 0,230
DEF LABEL LABEL 147 0.241
DEF WAIT WAIT 150 0,241

8-118

Section 8: Beference Material

ROUTIME NAME TOKEN ATTRIBUTES
DEF PLOT. PLOT . 151 0.241
OEF PANTA. FRINTER I3 152 0.241
DOEF FRINT PRINT 153 0,741
DFF AAD, RAD 154 0.241
DEF ANDIZ. RANDOMIZE 155 0,241
DEF READ. READ 150 0.241
OEF STORA STORE BIN 157 0241
DEF RESTAQ, RESTORE 160 0,241
DEFRETRN. RETURN 161 0,241
DEF OFTIM. OFF TIMERH 162 0,241
OEF MOVE MOVE 163 0,241
DEF FLIF FLIP 164 0,241
DEF STOP. STap 165 0,241
DEF 3TORE STORE 166 0,141
DEF PENUF PENLIP 167 0,241
DEF TACVE TRACE WREL 170 0,241
DEF TRCAL TRACE ALL 1T 0,241
DEF X&xI8 XAXIE 172 0,241
DEF YAXIS YAXIS 173 0,241
OEF COPY. COPY 174 0,241
OEF NDRMA, NORMAL 174 0,241
OEF ERAST ERA&SE TAFE 176 0,241
OEF INTEG INTERER 1317 0,323
OEF SHORT. SHORT 200 0,322
OEF QELET OELETE nl 0,141
[DEF SCALE SCALE 207 0,241
OEF SKIP! REMARK 204 0,241
OEF DFTID OPTION BASE 204 0315
OEF COM, cam 205 0,324
OEF SKIPEM DATA 206 0.320
DEF DEFFN. OEF FN 207 0.312
OEF 0 (LS 210 0.321
DOEF KEYLA, KEY LABEL 21 0241
DEF STOP END 212 0741
DEF ENATN FM END 213 0313
OEF FOA FOR 214 0,341
OEF ERAOAT IF 215 0,344
OEF SKIPIT IMAGE 216 0,341
[EF MEXT NEXT 217 0,341
[EF UNSELC. UNSECURE 220 0,141
DEF ERROAT LET (IMPLY) 271 0,244
DEF ASIGN, ASSIGN T3 0,241
DEF CREAT CREATE 223 0,241
DEF PURGE. FURGE 224 0,241
DEF REWIN. AEWIND 225 0,241
DEF LOADE, LOADBIN 226 0,241
DEF PALSE PALSL 227 0,241
DEF LOAD. LOAD 230 0,141
DEF REAL. AEAL 231 0,321
DEF RENUM. HEM 3 0,141
DEF SKIF| [233 0,241
[EF DEFA- DEFALLT OFF 734 1.241
DEF PEN. PEN 235 0,241

B=11%

Section 8:

8=112

Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
OEF PLIST PLIST 236 0,241
DEF LDIA LOIR 237 0,241
OEF IMOVE, IMOVE 240 0,241
OEF FNLET. FM ILET 24 0217
OEF CTAPE. CTAPE 242 0.241
OEF TRACE TRACE 243 0,241
OEFTO Ta 244 0.41
[EF OR, A 245 251
DEF Max10 MAX 245 40,55
DEF TIME TIME 247 0,55
DEF DATE DATE 250 0.55
DEF FPA FP 251 20,55
DEF IPS P 252 20,58
DEF EPS10 EPSILON 253 0,55
DEF REM10 AMD 254 40,55
DEF CEIL10 CEIL 255 20,55
DEF ATNZ. ATNIESY) 2hE 40,55
DEF SKPLEL STMT LABEL E57 0.3
DEF S0RG S0R 260 20,65
DEF MIN1D M 261 40,55
[FEF GTOLAL GOTO LABEL 262 0210
DEF ABSS AES 263 20,55
DEF ICOS ACS 264 20,65
OEF ISIN AN 265 20,55
DEF ITAN ATN 268 20,55
DEF SGN& SGN 267 20,55
DEF G3LA GOSUR LABEL 270 0,210
DEF COT £oT m 20,55
DEF CSECIO CSE 217 20,585
DEF FTADR3 I-0 5T ARAY 273 0,1
DEF EXPE EXP 274 20,55
DEF INTS INT 275 20,58
DEF LOGTA LGT (10} 278 20.55
DEF LNG LOG {E] 211 20,55
DEF FTADRA 2.0 5T ARAY 300 0.1
DEF SEC10 SEC an 20.55
DEF CHAS CHAs oz 20,56
DEF VALS. VALs a3 20,56
[EF LEN. LEN 04 30,55
OEF NUM, NUM 305 a0.55
DEF VAL VAL o8 30.55
[IEF INF10 INF aoy 0,55
DEF RND1O ANO o 0,55
DEF PITO Pl m 0.55
DEF LIPCs. UPCs nz 30,56
DEF USING. USING na 0.341
DEF ERROAY THEN 14 0.44
DEF TAB TAB 15 20,45
DEF STEP. STEP 38 0.41
OEF EXOR, EXOR n 2,51
DEF HNOT NOT K 1,50
DEF INTDIY DIV) i 12,51
DEF ERKUM ERRN 322 0,55

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF ERRL. EAAL 323 0,55
OEF AESET. RESET 324 0.44
OEF AND AND 325 4,51
OEF MODTO MO 326 1251
DEF EAROAX ELSE 327 0.44
OEF SN0 SIN 3an 20,55
OEF COS10 COs an 20,55
DEF TAN1D TAN a3z 20.55
DEF NOP2 TO [A55IGN] 333 1151
DEF RSTO RESTORE LN 334 0227
DEF RESTL. RESTORE LBL 335 0,227
DEF ERROAX | 136 0,44
DEF ERRORY] an 0,44
DEF INTOINY b 340 12,51
DEF POS. FOS 341 52,55
DEF OEG10 RTD 342 20.55
DEF RADT0 OTH 343 20,55
DEF INTS FLOOR Ja4 20,55
OEF USINL USING LABEL 345 0327
OEF HEADN READ {NUM| 346 0.44
OEF ULINg. LISING LINE & J47 0327
DEF INPLIN, INP NUMERIT a60 0,33
DEF INPUS. INP STRING 351 033
LEF FNAET. LET FNiz=} 152 018
OEF READS READS 353 0.44
DEF PRLINE PRINT END KELS 0.35
DEF SEMIC. PRINT; 155 0,38
OEF COMMA. PRINT, 66 0.36
OEF SEMICS PRINT:# 357 036
OEF COMMAS PRINT.S 360 0.36
DEF ERROAX OUMMY 361 0,241
OEF STEPK. STEP KEY J62 0.241
DEF FTADRT 1-0 NUK ARY 363 0.1
DEFFTADRZ 2.0 NUM ARY 64 0.1
DEF TEST TEST KEY 365 0,341
DEF ERROAX DUNMY 366 0,44
DEF INDEN INDENTATION a67 0z
DEF ROM:GO EXTERNAL ROM 370 0214
DEF BP:GO BINARY PROG an 0.z14
OEF ERROAX UMY a2 .44
OEF ERROAY DLMMY 3713 0.44
DEF ERAORX DLUMMY KEE .44
DEF ERROAX. OLIMMY a78 0.44
DEF EARDRX DUMMY 376 0.44
DEF ERRORX DURMY an 0.44

§-113

Section 83

§-114

Heference Material

Runtime Tobla/ Tokens and Attributas for Graphics ROM #1

ROUTINE NAME TOKEN ATTRIBUTES
RUNTABR DEFINIT aumMMY &0 i
OEF PLOTA PLOTTER IS 1 241
OEF PANTR. PRINTER 15 2 241
OEF CAT. CATIS ! 241
OEF LIMIT LIMIT & 221
OEF BCLR, GCLEAR] 241
OEF LOCAT LOCATE i 2
OEF BPLOT aeLaT ! 24
OEF SCALE SCALE 0 4
OEF SHOW SHOW 11 241
DEF M3CAL MSCALE 12 241
OEF CLIP. CLIP 13 241
DEF UNCLL UNELIP 14 241
DEF SETGL. SETGU 15 231
DEF SETUL. SETUU 16 281
DEF PENUP. PENUR 11 FLy
DEF GREAD. BREAD i) 241
DEF PEM. PEN 21 241
OEF LINET LINETYPE 2 241
DEF PLOT PLaT 3 241
BEF IPLOT IPLOT 24 241
DEF MOVE. MOVE 25 241
DEF IMOVE IMOVE i 4
DEF DRAW DRAW n 4]
DEF IDRAW. [IRAW kit] 4
LEF RFLOT, APLOT 3 pEY
DEF POIR POIR 32 241
DEF BLOFF NOBLINK 33 FLA
DEF AXES. AXES R 41
DEF LAXES, LAXES 35 241
DEF GRID GRID 36 241
DEF FRAME FRAME ar 41
DEF LABEL LABEL 40 ey
DEF BLINK BLINK a1 241
DEF LOAG. LORG az 241
DEF LOIA LOIA 43 41
OEF CSIZE. C3IZE 44 241
DEF WHERE WHERE ik 141
DEF CONTR. CONTROL 46 pLA
OEF CURSRA CURSORA a7 241
DEF DIGIT DIGITIZE &0 241
DEF OUMMY TRANSLATE 51 e
DEF LGAID. LGRID b2 241
OEF GRAPH. GRAFHICE 53 141
OEF XANXIS. KAXIS 54 241
OEF YAXIE YhXIS 1] 241
OEF FXD Fxo 56 41
OEF ERRSL. EARSC &7 055
OEF ERROM. ERROM] 0.55
OEF RATIO RATIO B1 0.55
OEF TAR TAB 62 20,45
OEF LABEOL LABEL EOLINE B3 35
OEF PAGES. PAGE SIZE Gid 41
OEF ALFAL. ALPHA ALL G5 241
OEF GRAFA, GRAPH ALL il 241
(EF FRE. FREE MEMORY 67 055

Section 8: Reference Material

Runtime Table/Tokens and Attributes for Mass Storage ROM #320

ROUTINE NAME TOKEN ATTRIBUTES
RUNTIM DEF INITIT OuMMY # 0 0 244
[EF ASSIG ASSIEN 1 241
OEF MSCAT CAT 2 241
OEF CHEOF CHECK READ OFF K| 241
OEF CHECK. CHECK READ 4 241
OEF ERRORX OUMMY ROUTINE 5 44
OEF M3CPY, COPY] 241
[DEF MSCRE, CREATE T 41
DEF INITI INITIALIZE 10 41
DEF MSCHA CHAIN [§] 41
DEF MELDE LOADBIN 12 pL3
DEF M5LOD LOAD 13 141
OEF MASSS. MASS STORAGE IS 14 241
OEF MSPRANT PRINT# 16 241
[EF ERROAX DLUMMY ROUTINE 16 L2
OEF ERROAX OUMAY ROUTINE I ah
OEF MSPUR. PURGE rli] 241
OEF READ. READH 21 4
DEF MSREN. RENAME 22 241
DEF M35TE. STOREBIN 23 141
DEF MSSTD STORE 24 141
OEF FACK. PACK 25 FL A
DEF VOLUA, VOLUME 26 pL 3|
DEF GLOAD, GLOAD 27 241
OEF GSTOA. GETORE an 241
OEF ERROM ERROM a1 .55
OEF ERRSC. ERRSC 32 0.55
OEF TYP TYP 33 20,55
OEF 15. IVOLUME] 15 14 1,51
OEF ERRORX ODUMMY ROUTINE 35 44
DEFTO. {RENAME) TO 36 1,81
DEF ROMUM, READ# NUMERIC i 44
OEF PRARR. FRINTH NUM ARRAY il I8
OEF ROSTH READ# STRING 41 4
OEF PANUM, PRINT# NUMERIC &2 k]
OEF PRECL PRINT# END OF LINE &3 ih
OEF PRATR. FRINT# STRING 44 Kl
OEF ARARR. READ# NUM ARRAY 45 s
OEF PRARAS PRINT# STRING ARRAY 4@ a6
OEF ADARARS READ# STRING ARRAY M 44

8-115

Section 8: Reference Material

B.7 Error Messages

Following is a list of the error messages provided by the Assembler ROM
and the system monitor. For other errors refer te the owner's manual aor
to the manuals for other peripherals that may be attached to the HP-87.

Assembler System Errors

ERROR 16%: ILL MODE A command has been executed in the wrong
operating mode (that is, ASSEMBLER has been
typed when the computer is already in
assembler mode) .

ERRCR 11@: LBL An invalid label has been seen; may have
been longer than six characters or
started with a digit.

ERROR 111: QPCO The opcode is not recoggnized; may have been
misspelled, no space was typed between the
label and the opcode, or because the opcode
was entered in the first or second ceolumn
after the line number.

ERROR 112: ARP-DRP Invalid ARP or DRP; ARPs and DRPs must be
between @ and 77 inclusive, and cannot be
1.

ERROR 113: OPER Bad operand; that is, LDM R34,=3,remark.

Because a number follows the egual sign
in this example, the assembler expects
another number after the comma. Also,
geach literal value must be specified with
two digits if a BCD guantity.

ERROR 114: FIN-LNK Missing FIN or LMK statement. If the
file name or file type is wrong in the
LMK statement, then a "FILE NAME" or
"FILE TYPE" error will be generated.

ERROR 115: AS5M ROM At power-on, this means the ROM had a

checksum error. At a breakpeoint., any
errors generated give this message.

g-116

Section 8: Reference Material

Assembly Errors

ILL NAM A NAM statement has already been executed,
or an ABS ROM has been executed.

ALF UND The specified conditienal assembly flag
has not yet been defined as set or cleared.

ILL ABS An ABS or NAM statement has already been
encountered.

JME FROM The jump Erom the spcified line is out of
range.

JME TO The jump to the specified line is out of
range.

UND LAB After assembly was completed, this label

had not been defined in the program or in
the global file.

ILL GLO The GLO statement occurs after a NAM

statement, ABS statement, or ancther GLO
statement.

B-117

Section 8: Reference Material

8.8 System Hardware Diagram

. cat
L canTRELLA

_r.

‘ i
A
¥ IRTEEMAL BOE ARD CONTREL LINTE
[A + + .
¥ Y Y Y Y
| e PwEn ' " STYOOAAD TIMING
ey el Aun sisfren BRI E ARIESPLAKLR
‘- LGHr ATHTEM AGR CORTACLFS
A 'y [1
tntmdn
T AN ' RETHOAND
B HTRLMIE AR BT
— e e LR
L
T 3
BACK PLAKT g el
i LOAWIL TR
FETHREL NUS SR CUNTIGOLLINES &
I .ll A
L]
=T f !
141 b
aruen T E n CATER AL ETTERNAL
110 CanpE safl nomy
[]
T

8-118

i
£ 1 HASEE
an
[

BAK 1 NAME
an

ti
dile P RaME

Section 8: Reference Material

8.9 Assembler Instruction Set

On the following
ROM.

the Assembler
Legend

DR

AR

Literal

Label

Clock Cycle
8

T

Rix)

M=)

5P

EA

pages is a list of all CPU instructions available on

Data register. Can be register number (that is, R32),
R*, or Ri.

Address register. Can be reglster number, R*, or R#.

Literal value, up to 1@ octal bytes in length. Can be
BCD constant (that is, 99C), octal constant (that is,
12), or decimal constant (that is, 20D). Can also be
specified by a label, where the literal quantity is a
one— or two-byte value or address assigned bto the label.

Address of literal quantity. Label name must begin with
an alphabetic character, can use any conbination of
alphanumeric characters, and can be 1-6 characters in
length.

1.6 set.

Number of bytes,

&dd one clock cycle if true (that is, the jump occurs).

CPU register addressed by (x).

Memory location addressed by (x) where (%) is a l6-bit
address.

Program counter stored in CPU registers R4 and R53. Used
to address the instruction being executed.

Subroutine stack pointer stored in CPU registers R6 and
R7. Used to point to the next available localion on the
subroutine return address stack.

Effective address. The location from which data is read

for lead-type instructions or the locaticn where data is
placed for store-type instructions.

g-119

Section 8: Reference Material

ADR Address. The two-byte quantity directly following an
instruction that uses the literal direct, literal
indirect, index direct, or index indirect addressing
mode. This gquantity is always an address.

n Literal value.
e Is transferred to.
[Contents of.

—_— Complement (that is, % is complement of %). This is
one's complement if DCM=8 and nine's complement if

DCM=1.
F Logical "and."
v Inclusive "or."
C:) Exclusive "or."
JIF Jump if.
1 Status bit is set.
@ Etatus bit is cleared.
A Status bit is affected.

- Status bit is neot affected.

¥ This option is available to this instruction.

B-120@

Section 8:

Reference Material

Stanus
' ! Binary/
Instruction fua Addrasing Clack i
Dnscription Opzoda Oparatian OCM =10 ocM =1 8CO
Farmai Munds Cyclns ROz Ostitn
L8 M5B 1DF ¥ DCM E CY OVF E CY OVWF
AOENS 48 Add bytn flog imm m7 5 DR = 0f + &R % % X ¥ - — I X — X 1] ¥
ADB 3R = Add byte it nm 1z] OA=0GR +~MIFC+ 13 X b i i = X i = % o ¥
literal
ADBD 5R. AR Add byte Aeg. dir 132 B OA + OR + M|AR)) i X i = = X — X] k|
ADBOD &R, = Bdd bytn it dir a2] OR = [OR -+ M|ADR| X X X i - — I r — X [t} k)
tabpl
ADM 0R AR fdd malbs- Aag imm 303 i1 +8 | O~ DR+ &A i X X x — X iLo— 4 i])
btz
ADM &R = Add mlti. Lit. imm. 13 48 | DA =0R-=MPC 1 X X X ¥ — — K X - X o b
Irfaral liyte
also a8 a8 add mulei- fag. dir ok | Boe @ | 0A = DR = Mj&K| £ 5 H Y — - X% | - X% 1] ¥
byt
A0MO 08 = Add mulzi- Lit. dn a1 4+ 8 | Of ~ OR = MIADA: i X % H - X i — X% ¥
lebal byt
ANM 08 AR Logical AND Reg. imm. an 4+48 | UR ~0OR- AR X X ¥ H] — 1 o — .o]
(musti-byre)
ANM IR Lagical AND Lit. imm m 448 | QR =DR - MPC = 1} X X X ¥y o — — 1 o — 0 0
leteeal {muits-hytny
ANMD 08 AR | Logical AND Reg. Ou Kk 540 | D~ OA~ WAl X i i 5 o= I g — 0 il
mult-byte)
ENMD 08 Logical AND Let. dir) 5+ B | DR+0OA - MIADRI X X X ¥ — — 0 0 — 1 i}
Laoe {mitihyta)
ARP A8 Load ARF ona-oy sy 2 HRP =n = — _ - = = = r e =02
(=001
&AP-* Load ARF wih an 1 ARP = Rl — = oy s R e e e e
tonlents
ul RO
BCO Fet BCD mode i L BCM & - - v omm - — = —
N Snt hinpry 230 4 OCM -0 —_ - - 0 - = - - - —
mode
CLE AR Clzas byt Ang imm 127 5 OR=10 % % X ¥ — — 0 79 — @ [
CLM OR Tl ar mulgi- ey amm 123 4+8 | OR=0 L) X ¥ o1 = o 0 — a b
byte
CLE Claar E 135 1 E+1 — - - — 0 - — 0 — —
CME GA A4 Compare byte | Heg imm am 5 OR + AR+ 1 k3 X i g - — X K = K i} L
[MBOS = Comgare hyte | Lt imm an 5 o 4 MPC4 1)+ 1 X & X r - — X i — X il ¥
fiteral
CMB0 87 4R Coimgaie hyte | Arg. dir k1] fi O + MR + 1 i X 5 r — — X xr — X a it
CMBOOR = Compare byte | Lit.dir. j20 § OR + M|ADR] +1 X X X i = L & — ¥ 0 ¥
talipl
CMM R AR Tompare Aeg. imm aan 4+8| OR+AR 1 H X X X - X X — X] U
multi-liyle
MM OR = Compare Lit. imm nt 4+8 | DA +MPCIH 11+ 1 H X X ¥ - — X ¥ — X 1 1
flireral mubi-hyte
CHKD IR 47 Lampare Heg dir i3t B @ | O+ WA +1 % X 1 I — — X 5 X ! Y
muiti:hyle
CHMD TR - Comgpare Lit: dir. KKl =8 | OR+ MIADR| + 1 H 1 X o= .= X E =X [1
faba! mitti-byle -+
NCE 08 Decramen: Rep. imm N3 B Of =D0R — 1 ki 1 X r - — r - K i} Y
byte
OCM 08 Dertement Aeg. imm 13 i-8 | BA=DR—1 i X X i X X — X i ¥
mubti-lyte
OCE Decrament E 231 1 E=F—1 — = - = = k = - kB = =
DRP 27 Losd DAP 104-177 F) OAP =n = == EE o mms e . =
(w0
BRe 1 Load OAP with 101 .| OAF - AO — v Pl b alem oo e
eantenis
of AD

g-121

Section B: Reference Material

Statuy
! Binery/
e | Onsceiption | A44risa8 | pyegyq | Sk Operation peM=0 DEM=1 | BCD
Ll RDZ Option
Ls8 M58 LOf I OCM E CY OYF E CY OVF
Ela R Extesdod [elt | Rag. imm. mnn 5 Ciculaig OR & ¥ i X 1 - — I kY LA | [¥
Lyt Ieht onga
ELM 08 Exizndad leH | Rapg imm 201 4 =4 | Ciculiin OR i] X 5 - — I x 4 0 i} ¥
Enilb-Eyte Ielt orace
EAB &R Exteniled Fiey imim 102 8 Circutate DR i A X X b S IR S | 1])
right Bryie night onca
EAM 05 Extendad nght | Fapg imm W03 4 —4d | Circulsiz OR E X 5 E - — XK a % 0] i
multi-ytg rghl ance
ICE 08 Incromenl Feg imm 210 5 O0A=DR—=1 kS k) X X X X - K 1] ¥
hyie
ICK 27 Fnctement Reg. imim 71 &+ F | O =DF-=1 k] k] 5 I — — X ¥ — X] ¥
multi-lyre
ICE Incremant £ 234 1 E=E+1 - = I . R
JEY lgbal Jump o cary 73 5+T | JF=CY=1 - = - - = = = = = = =
JEN fwbpt dump s E m 44T | JiIFE=0000 —_ — == = - - —
non-Tern
JEV fadaf Jurmsp on even 183 447 | IF5B=10 — i emTeTEE e DI g
JET fael Jumsp an B am A+T | JiF E=a0on - = _ - = = = = = = =
1
JUN intai Jurrp on bely 175 (44T | dFLDE=] = = i T -
digit
nanpro
JLE fada! Jumsp un leht g 4+T | BFLDZ =1 — = foo p: oS o s SSTEE Gas
it 2ern
JMP fga! Uncaorditsanal 380 &+ T | Jomp abways — — _ —_ —_— — — — — — —
jmj
JNE kel Jump on ni i 4&+T | AFCY=0 - - —_— e = — = = — =
Carmy
JNEG gl Jurmp nn 364 A4+T | JIFMSE = 0OVF - - —_ - - —
nepative
JHD faber Juimg an sn 181 A4 T | JFOVE=D — —_ — == e
waertlow
JNT fabal Jumz on 166 A+T | JFZ T - = - = = = = = = = =
nonaer
00 fade! Jumz on odd i) 4+T | JFLEE=1 — - T S g
JPE ke Jumpan 3E4 4 =T | JIFM3E = GVF - —_ _ —_— == = — —— =
pOsHivE
JEN fnbe! durmp onright mn 4+T | JFADZ = - - - = = - = = = —
dhgit
non-Iern
JRiehe! Jummg an right 7R 4T | JFAQT =1 — — = e == e =
digil rera
JEB = fadat Jumg Litgral A6 i Jumg subrouting - = —_— — — — — —— =
subrouting direct
JEB AR igha! Jump Ingered 306 11 Jumg subirouling - = S ohr ISP T TEs e Sasn =
subrouting indrxpd
J] Biatal Jumip on 1ero B L+T|FZ=1 - — —_ = - = — = == =
LDB 08 AR Load Bytn Rag. imm. 240 i OA ~ &R X X “ % = o0 =0 0
LOB 7R Load kyze Ll imm 50 5 | pR=-MPC =1} X ¥ % — — @b 84 — 0 b
Sfgrad
LOBO &7 48 | Lpad oyte Reg. dit. 44 6 | Of = Mjan; LR X ¥ — — 0 0 = 0 0
LDE0 88, = Load byin Lt dir 260 6 | Of = MjARR) i ks ¥ 4 = =0 0@ — 0 @8
fakal
LDA0 2R XAR | Load byte Indpn dir 264 3 | DR = WHDR + &R) kS X XK == 0 B =0 B
Tnbal
LOE 28 A7 Load fivie Ry oadin 254 8 | 08— MimMiARD ¥ X £r % — — 0 40 — 0 q
agr = Load byle Lit wndit 270 & | DR = WMIADRL X i ¥ & — — D @ =D 0
fagel

B-122

Section B: Reference Material

SEalmy
i . Bimary!
||
n;::lr;:‘_'“ Descrigtion Mﬂ:;:“n Opcoda ghr:‘ Dparation DM -0 DCM =1 BCOD
e Dz Option
L4 MSE 1O 7 OCM E CY OVF E CY OVF
LDBIBR. 4R, | Load byle Index mdir 714 10| DR = MiM{ATR + X i ¥ X — — 0D 0 — 0 @0
fatral AR
LOM 5. 48 Load Reg. imim. 241 4+ & | DE-aA X kS X X n a n]
mulfy-hyla
kDM 2R = Load Lit. smm a5t 4+B[DR=MPEF 1 i i T K — — 0 0 — p 0
fitaral mulei-tiye
LOMD 88 28 Load Rep i 245 S4B | DE = MIAR X X X % 1] g — 0 a
multi-hyla
oMo ga = | Load Lo dir B | 548 | OF = MIADR No% % % — — b 0 — 0 @
letal multi-byre
LOMDO 84 £48 | Load Indee s 265 T 0| 00 =MADR = AR X X X & — — D 0 — 0 A4
fethal multi-byla
LOMI G847 Load Reg. indir 255 T8 | o= MMiaR| X 5 % E = B — b a
multi-hyla
LOMI 3R = Load Ls1. imdir 7 T+8 | O = M{Ma0RA)| X X % X — — K] o a
JENE mulels brgtn
LOMI 0% AR | Load Index indir i 9= @ | O =~ MIMIADA + £ X i I - — 1 o0 — o {
fatre! multi-pe ARI
LLE 8 Logical lete Rag, Imm 204 5 Logecad InH i X X i - — 1 L O 1] i
brin shill DA
LLM 15 Lagical [elz Feg. imm 205 4+ 8 | logics lab X b X X - — % ER | 1] bl
multi-byin shili OH
LRE 27 Logical night | Reg imm i 5 Lagical nght ¥ H ol — — X 0 B om0 1
brte ghifi DR
LRK 08 Lagical right Reg imm 7 448 | Logical nght X i X %2 — — %X o % 0 | i
multi-apia sl OR
HCA OR Hing's Reg, imm 218 5 [A =~ [X X % I - — X 1 — ¥ i iy
{or ome 5]
complemgnt
hytp
KEM 08 Bina's Feg 1mm 27 4+8 | DR =ik i X i b4 — - X b x 1] ¥
far one's)
campfemari
mualte-hytn
0AE 07 AR Or byta Aeg tmm 24 5 OA = OR ¥ AR H X X { — — 0 0 — 1 I
nclugive
UAM &5, AR [multi-byle Ang imm 275 4+8 | DR=D0A" AR H S i kS - B0 0 — 0]
mnclusive
Pal Pog &AF. OHP FR]] Sazus — M(5P) X X £ i — i r — X x
and siatuy
leam slack
POBO OF ~AR | Popbwiewnh | St dir L] OF = Mi&R, X X i i — — 1 g — 0 n
pazt- AR+ AR +1
incrzmant
POBD &/ —AR | Popbypimwith | Sik de a2] OF = MiAR|, X i] | — | b — 1 1}
e A= &A -1
dncra mani
POBI &R +48 | Popbyte with | St ander 350 B QR = MM AR X i H i a B — i@ 0
pis! AR =247
angiamend
POBI 08 —AR | Pophbyce with | Ste endir 352 i OA ~ M{M|ARI) i X 4 i — — 0 0] o
frS AR =88 - 2
CELTEMENT
POMD R, +48] Popmuliibyte | Ste. endic Lh 5+ B 0A = wism] i POy — B 00 — @B @
with post AR = AR+ M
itcrement
POMO SR, —A8 | Pop mulicbyn | Stk dir 343 &8 | DR = Mi&R|, i i i X 0 0 — 4 0
with g AR =AR—M
degrampnt
POMI BR +AF | Pop mwlnbyte | Stk indie 381 1«8 | O = MM{&RL, 5 X i i ' | il 0
with pogl- AR = AR+ 2
intrament

B-123

Section B8: Reference Material

Statn
1 Hinary/
|h;1::::|:'ll'l Deazription H:T“ Dpcade I:I:'.'|n;tl. Dparstion ocM =1 OCM =1 aco
e Joled noz Dgtian
LS8 M58 LDZ I OCM E CY OVF E CY OWF
POMIZR, —4R | Pap malt-byte .
with pra- | 5tk ndir 353 | T-d| oA = MM, ¥ X % X — — 8 0 —@o o
detiarnent B &H — 0
PUBD 08 +AR/ | Pushbyie .
with post. | Stk dir 44 B | MRy =0, ER ¥ ¥ — — o 4 — o0 B
inereiment AR = AR =1
FUBD OR ~Af | Push byia
with pra- Sik. the EEL [} AR = AR— I, X H ks ¥ — — 0 0 — 1]
decrament MLAR; - OA
FUBI &R +A8 | Fosh biyle
with pass. | 5tk indir ind B | iRl - OR Yo% % X — — @ 8 — 0 4
mEFRIEEnt AR = AR+ 2
PUBI 08 —AR | Pushbyle N
ish e Stk mdir 585 B EH = Af - T X X X ¥ — — Db g — o i
drerament MiM[AR]) = T8
PUMD 08 +4R | Push muiti-
biyls with Sik, din a4 G+ H| MAR = DR x X X ¥ — — 0 O — a0 q
ausl- AR = AR 4 M
nEment
PUMDT 08 —A8 | Push muli-
fiyle with St dii 3an S54+B| aA—AR—M, X X L« X — — 0 o — 0 a
pre- Mi&AYy ~ OR
dacreman|
PUMLDR +df | Push muly
iyle walh St indir 355 THBE| MMAR) - DA X X] y o= = o — 0 @0
post: AR = AR+ 2
increman|
FUMIDSE —AF | Puzh mult
hiyle with Seh indir a57 1+8]| M-AR—2 X X] A o= = [\ - 1 o
pre: MAMIAR) = DA
dacramant
HTN Subteuimi
Hgtath 136 5 5P 5P —1, - - — -
PG+ W5P
a0 Sawe ARP,
0AR and 1o & | MIST) = Status = = B SRS R S=RE SR =
Llalus an
sintk
SBEJR A8 Subitract byte | Aeg imm 104 B |DA+<DR—- AR+ X X] o= — 4 X — X 1 1
SEEOR = Subiiract hyle | L imm 1a B |OR=0OA~+MPC+ 1] X £] = = = % 0 1
reral L |
SHE0 07 AR Subereet byt | Aag dir. J14 B |OR+~DR-+ M{ARL—E] X X H ¥ — — X T — %X @ 1
SREAD 08 Subtraci byte Lie. dir 124] IR = 0R + MiAOR) : | X k] i - — X X = K a i
fede! ot |
SEM DF a8 Subitract Rag imm 305 &+ B8 |DR-D0A+ AR +1 i i 3 - — X « — X 0 ¥
mulsi-byld
SEM 08 = Subereet Liv: imm. 315 4+B |DR=DA+MPC+ 1] X X X o= = X iX — X 0 ¥
lteref mullti-tyle +1
SEMD 0R AR Suhtract Rag dir 335 b+ B |DR=DA+MipRp— 1] X X X X = = 3 fX — X a ¥
multi-hyle
SEMD 08 = Suhbtract Lit. it 325 5+ B |DR =08 4+ MiADR % X X X — — X X — K a ¥
Lokrel multi-hytn 43
STE IR A8 Slane bivis Reg imm 241 5 |LR—&R i i 1 T - — 1 B — 0 0
ST 08 Store hyta L. imm 231 5 |DR—=MPC+1) L £ H ¥ — —|Ib b — b @
fteral
STEO DR, A8 Senre byte Reg. dii 246 B DR = M{AR| % X H ¥ — — 1 I] 1]
STHD OR. = Erore byte Lt dir. 252 b JDR—=MiADR| i X H X = 1] B — 0 a
fairal
STBO &8 148 Seore hyte Index dir 266] DF - Mi&0R + AR X X i | | 0 — 0 o
f2he!
STBI 08 48/ Seore byte Reg indir. 158 H DR = MiNARY k) X k] ¥ — — 1 b = 1 t]

B-134

Section 8: Reference Material

Staten
Instruction Addressing Chack Ry
Daseri Opcod Oparation oM =14 DM =1 ECD
Format acriptioy Muods pecen Cycles P ADE Dptlon
Lsd MSB LDZ I DCM E CY OVF E CY OVF
§TRLOR. = Slore byte Lie. indir. 72 i DR —~= M{MIADR])] X] i = 1] i — 1 1]
[LLTT .
STHE DR kdA, Slovm hyle Indazx indir bl 10 | DR = M{MJADR +] ¥ X r — — 1 I — 0]
lahal A7)
STM O/ AR Stare mubli Reg. imm 243 4+H8 | IR =28 X X X i — — 0 b — 0 a
byte
STM 8, = Store mutti- Let. vmin 251 448 | DR—=MPL+1)] X ¥ & = =8 0B — L @
figral byle
STMO 08 AR Sroem multy Rep. & 47 5+ 8 | DR = MiAR| k3 X i i — — 1 D — 0 1
(]
complament
ke
] NCM OF Nire's Bep. imm 217 40 | O =08 H X X H — X ¥ oo— K o
{or ene’s|
complament
mulzi-byie
| ORB 0F AR Or byte Aeg. imm 74] [R-= 0§ ¥ &R % kS X i =] 1 — 0 o
melusive
OAM 0F. 47 Or mulis-byte | Arg amm 125 4+E | OR=ORY AR] X N r — — 0 B — 1 1]
selusive
Pl Fop ARP, ORP a7 [Satus +~ MISP| x X X L X H X
and status
fram s1ack
PORG R, 4R | Pophbytewsik | Stk dir 340 B OR = KAT) X X H L = a 0B — o
post: AR = AR
incremant
| POHDON —AR | Pop byte with | 52k dir 342 B Ofl — MiAH), £ X i ¥y — — 1 o — 0 a
pre AR = AR — 1
dacroment
." POBIOA, +4AR Peg byte with | Stk indn 350] R = MiMiARY, 5 X X ¥y — — 1 o — 0 L]
i1 LB AR = AR + F
mcromant
! POEILOR —AR Fap byte with | Stk indn 152] DR = MW AR,] X X ¥ - — 1 o — 0]
(=] 8 Afl= AR — 32
dettemend
POMOGA. +AR | Pop multi-byie | Stk. indir 341 5+ B | DR = MARL H A X {f — — 0 @ — 1 i
with post- B —=AR+M
mcramant
STMDOR, = Stara-mul- Lir dir 263 54 B | DR = M{ADR} X X b |] B — 1]
latel byt
STHMD 08 a8 | Stoce mule) Irdex dir 167 T+8 | OA—=M(AOR+ AR| X X X ¥ — =0 b — 1 0
latel biytn
STMI TR AR Store mult fleg. mdir, 157 78 | DA = MiMIARY X X ¥ %X — — 0 O — 0 @
byte
TR = Siare multi- Lit. indir. 173 T8 | OR = MM ADA]) X X ¥ ¥ — =0 0 — 0 @
fadel I:r'I:E
STMILOR Xam S1are miulti: Index imdir 17 S48 | 0f-= M{MADA +) X) ¥ — — D 0 = D a
akal |:I'|I'I:E AR
TCE O Ten's Reg. imm. 214 5 O ~0OR+ 1 X A X i = 0o — o i Y
{or bwo's)
camalement
hyte
oM OF Ten's Fag mm 215 | 448 | DR-DA+1 X X ¥ ¥ — — 0 0 — 0 0 ¥
[ETRE -8 1]
enmglomant
malls-byte
TEB 08 Tast byie Heg. imm 220 B Tesl IR 3 % X @ — — X ¥y — I n ¥
TaM 07 Tast multi Rag imm 111 4+ 8 | Test DR X H X I = = X i = ¥] ¥
brin
ERE J8 A8 Or byte Fag. imm. 728 5 DR=DR + KA X b3 X ¥ — — 0 1 — 0 1]
aselugive
EAM 04 28 Or melii-byen Rep. imm, 227 4«8 | DA=0OR + &R X X i i — — 0 n — i i}
astlusive

8-125

Section B: Reference Material

8.18

B-1Z6

Assembler Instruction Coding

7] b5 4 3 Z 1]
0 [RES Faonnn Load with 1itzral
ARP =[00an Load with A@
’ Logicalf o :
1 [0 [i Eitended Aight/Left M/B
- [ecremant
1 d v @ L - Increment Mg
Hine's Complement/ &
1 a J i] ! Tern's Complement M/e
1 0 K] 1 b 0 Clear/Test M/ B
1]] 1] 1 KOR/OR M/
1 (H 8] 1 1 aco BIN
HH| HEL
ina SAD
011 OCE
00 ICE
101 GLE
110 RTH
111 PAD
0 1 Qoo REG THH StorefLoad Mia
007 REG DIR
1o LiT 1MH
a11 REG IHD
| (400 LI7 ()
101 ihY QIR
110 LIT IHD
111 1% TN
1 1] [FlH] REG 1M ac CMP M/B
o1 LIT THM ol ADD
1 LIT DIR 1 5B _
11 REG olR 17 AND 1
1 1 a [uji] KX 11 J5E b
ol LIT
oy PUSH/ -AlR/)
] 1 ! M DIR Rop +ADR /B
1 1 1 1 (¥uje] JHOS dMP
i1y JEV/ DD
oia JES /S dRG
i1 8] JIR N
100 JEZFJEN
101 JO¥ £ JINE
110 JLNSJLE
m -JRN.-"JRE}
Y o= 1,40

Section B:

8.11

Keycode Table

Reference Material

KEYCODE KEYCODE
DEC OcT KEY DEC 0cT KEY
o I} clel @ 48 g0 il
1 1 cirl & 49 E1 i
i 2 ctrl 8 a0 iz 2z
3 3 etfl G a1 63 3
4 i ctrl 0 52 B4 4
b 5 cirl £ 53 £h 5
6 B ctrl F 54 i &
T 7 cirl & 55 67 7
B 10 cirl H 56 10 B
2| 11 cirt | 57 T i
10 12 ctrl J L T
11 13 it K 54 13 !
12 14 it L] 74 <
13 15 cirl M il TH =
14 16 ctri W 62 16 =
|5 17 ctri O 63 7 ?
15 20 ciil P 64 160 (@
7 P cirl 0 65 101 A
B 22 cirl A GG 102 B
14 23 cirl § &7 103 C
20 24 ol T i1 104 1]
i1 25 oirl b 64 105 E
s 26 el ¥ 70 106 F
23 27 cirl W 71 107]
24 a1 ctrl X 72 1o H
25 n cirl ¥ 13 111 |
6 32 etrl 14 112 J
27 33 eirl [14 113 f
2B 4 otrl ™ 16 114 L
9 15 ctrl | T 115 M
30 36 etrl 78 116 N
a1 17 otrl _ 4 117 0
32 40 SPACE BO 120 P
] 41 ! E1 121 0
34 42 B2 122 A
ih 41 # B3 123 5
K1 44 5 B4 124 T
37 45 B 85 125 u
38 45 & 36 126 W
39 47 g a1 127 W
a0 bl | 48 130 A
a1 A1 I 39 141 ¥
47 ¥l * a0 132 Z
43 53 - 91 133 [
44 54 = 91 134 "
45 55 - 93 135 |
46 56 g4 136 -
47 57 ! a5 137 _

8-127

Section 8: Reference Material

8.12 Programming Hints

If execution of certain advanced programming ROM statements is attempted

in assembler wmode, unpredictable results can occur. These statements
dares:

e X REF L

e A REF WV

REPLACE VAR

8-129/8-138

INDEX

&

Ahsolute address, 6-15
ABS pseudo-instruction, 6-47
Accumulator, 2-1
4D instruction, 6-27
dddressing modes, 6-17
Address register pointer
status, EBE-3
ATF pseudo—-instruction, 6-58
Allocated program, 1-3
Allocation, 3-18
ALPHA ALL, 4-6
ALPHA NORMAL, 4-4
AN, 65=25
Assembly errors, £-117
ASTORE command, 1-6
Attributes, f-18
Primary, 6-11
Secondary, 6-12
System table, 8-189
Attribute location, 6-18

B

Base address, 3-22
BASIC command, 1-§
BASIC program Eormat, 3-41
BCD numbers, 2-6
BCD instruction, f-44
BEIN instruction, G-44
Binary preogram, 6-1
Multiple, 6-50
Sample programs, 7-1
Binary programs
in system memory, 1-1, 1-3
BINEAS, &-58
BINTAB, 1-8, 2-5, 3-21, £=15
6—39
BKP command, 5=1

Breakpoints

Clearing, 5-1

output, 5-2, 5-3
BSZ pseudo-instruction, A-48
BYT pseudo-instruction, A-49

C
Carry Elag; 2-%, 53

CHEDIT, 3-28, 3-22, 3-25
CHIDLE, 3-28, 3-22, 3-25

' Class, 6=12, 3-35

CLE instruction, A-44

CLEDAT, 4-12

CLESTS, 4-12

Clock cycle, B-119

CLR command, 5-4, A-50

CM instruction, 6-28

Commands, 1-%

Camments, 6-15

Computer operation, 3-4

Conditional assembly,
pseudo-instructions, 3-4

Constants, 6-15

Contrel block, 6-3, 6-4

CPU, 2-=1

CrPU instructions,
assembly of, 6-45

CAT control, sample
pragram, 7-6

CRT blank and unblank,
4-13

CRT controller, 4-1

CRTBAD, 4-1

CRTDAT, 4-2

CHRTSAD, 4-2

I-1

CRTSTS, 4-2
Reading Erom, 4-2
Storing to, 4-3
STAT, 2-3, 3-18
Current status, 2-3

B]

DAD pseudo-instruction, f-49
Data register status, 5-2
DC instruction, 6-34
DCE instruction, f-44
DCIDLE, 3-22, B8-181
Deallocation, 3-15%
DEC function, 1-7
Decimal £lag status, 5-3
Decimal mode flag, 2-9
Decompiling, 3-34, 3-35
DEF pseudo-instruction, &-49
DGHOODE, 3-272
Disc, 1-2
Display modes, 4-4

LLPHAY ALL, 4-4

ALFPHA NORMAL, 4-5

GRAPH ALL, 4-f

GRAPH NORMAL, 4-5
DGHOOK, 3-22
DREFP

Description, 6-43

Status, , 5-2, 6-4¢

E

E register, 2-9

Effective address, 6-18

EIF pseudo-instruction, 6-5@
EL instruction, &=-32

EMC, 3-29

EMC pointers, 2-2, 2-3
EOVAR, 3-12

EQU pseudo-instruction, £-49
ER instruction, &-32

ERLIN#, 3I-28

ERNUM#, 3-28

ERROR subroutine, 3-28

Error handling, 3-27

» BError message table, 6-9

Error messages, 8-116
Assembler system errors,
8-116
Assembly errors, 8§-117
Default error numbers,
6=-9
ERRORS, 3-28
Execution pointer for BASIC
programs, 1-3
Executive loop, 3-6, 3-16,
3=17
Extend register, 2-9
Extend register status, 5-3
Extended memory controller,
3-29
External address table, #-10
External communicatien status,
2=-3

F

FIN instruction, 6-47

FLABEL command, 1-7

Flags, 2-8

Floating-point numbers, 2-5

FORMAR, 3-48

Format of BASIC programs and
variables, 3-41

FREFS command, 1-7

Functions, 1-5, 3-47

FWCURR, 3-12, 3-48

G

Get and Save sample program,
7-21

GETSAVES sample program, 7-=21

GLO pseudo-instruction, 7-21

Global file, 1-2, B=2

GRAPH ALL, 4-7

GRAPH NORMAL, 4-5

GTO label, 6-51

H

Hardware-dedicated registers,
2-2
Hardware diagram, 8-118

HGLS sample program, 7-2 K
Hooks, 3-28, 3-21

Flowcharts, 8-188 . Keyboard controller, 4-8
General, 3-21 Keyvboard scanner, 4-8
Language, 3-21 KEYCOD, 4-8, 4-9
Supplied at, 3-22 Keycode table, B-127

KEYHIT, 3-25, 4-8
KEYS sample program, 7-15

I KEYER?; 3':‘:@: 4—3r 4"]9
KEY5TS, 4-9
I1C instruction, A-35 Keyword table, 6-7
IMERR, 3-22 KYIDLE, 3-28, 3-23
Index mode, 6-20 Flowchart, B-105
Direct, 6-20 How to take over, 4-109
Indirect, &6-2¢ Sample program, 7-15

Initialization, 3-7
Power-on, 3-06

Foutine, &-9 L
Instructions, 6-13
Instruction coding, B8-126 Label description, 6-14
Instruction set, 8=110 Least significant bit, 2-11,
Integer representation, 2-7 5-3
Interpreter Loop, 3-8, 3-8, 3-9 Left digit zero flag, 2-12,
Interrupts, 3-18, 3-19 5-3
I05P, 3-28, 3-23, 3-26, 8-1p2 Line input sample program, 7-11
IOTRFC, 3-23, 8-183 Line numbering, f-14
IRQZ0, 3-208, 3-23, B-1p4 LINPUTS sample program, 7-11

Literal addressing mode, 6-19
Direct, F-19

J Immediate, 6-19
Indirect, 6—28
JCY, /=42 LL instruction, &£-34
JEN, /-42 LNK pseudo-instruction, f-48
JEV, 6-41 LOAD instruction, 6-17
JEZ, 6=-42 LR instructicn, /-33
JLMN, 6-42 L5T pseudo-instruction, 6-48
JLEZ, £-42
JMP, 6-4@
JHNC, 6-42 M
JNG.« 6‘"—3@
JNO, G6-40 Mantissa, 2-7
JNZ,; 6-41 MEM command, 5-4
JOD, 6-41 MEM function, 1-7
JPS, 6-40 MEMD statement, 1-8
JEN, 6-43 Memory, 3-2
JRZ, 6-43 Memory dump, 5-4
JSB, 6-39 Most significant bit flag,
Jump instructions, 6-39 2-12, 5-3
JZR, A-41 MSHIGH, 3-23
MSLOW, 3-23

I=32

MSTIME, 3-23 Parsing Elow diagrams

Multi-processor, 4-1 Calculator mode statement,
B-98
Main parse loop, B-97
N Parsit, 8-99
PC= command, 5-5
NAM pseudo-instruction, 6-4, PLHOOK, 2-23
5-48 Fointer status, 5-3
NARREF, 3-4@ Pointers, 31-29
NC, 6-38 POP instruction, &-21
Nine's complement, 2-f, 6-3f Decreasing stack, 6-24
Mumber representation, 2-5, Increasing stack, 6-24
2-7, 2-8 Power light, 3-32
NUMCON, 3-41 Primary attributes, 6-1¢
Numeric array Primary attribute of a
Local,; 3-44 numeric function, A-11
Remote, 3-44 Program counter, 2-2
Numeric formats, 3-37 Program counter status, 5-2
Integer representation, 2-7 Program shell, &-2
Short numeric variable, 3-3B Programming hints, 8-129
Numarical user definad PRSIDL, 3-23, B-1l@n
functions, 3-47 Pseudo-instructions, 6-47
NUMVAL, 3-39 PTR1, 2-2, 3-29

PTH1= command, 5-6
BPTR2, 2-2, 3-29

0 PTRZ= command, 5-=&

PUSH instruction, 6-21
Object code, 1-2, 7-1 Decreasing stack, 6-24
OCT statement, 1-8 Increasing stack, 6-24

ON TIMER routine, 3-20
One's complement, 2-6

Opcodes, 6-14, 6-15 R
Operating stack, 3-37
FORMAR, 3-39 R¥, use of, 6-43
NARREF, 3-39 Badix, 2-7
MUMCON, 3-39 Real number representation, 2-7
NUMVAL, 3-389 REFNUM, 3-=39
REFNUM, 3-30 Reglster
STRCON, 3-30 Bank pointer, 2-2
STRREF, 3-39 Boundaries, 2-3, 2-4
Operands and addressing, 6-14 Usage, 2-1, 2-2
OR instruction, A-28 Registers
ORG pseudo-instruction, 6-48 Hardware-dedicated, 2-2
Output stack pointer, 1-=3 Software-dedicated, 2-2, 2-3
Cperflow £lag, 2-11, 5=3 Register addressing mode, A-20

Direckt, 6-2d
Immadiate, 6-=20

F indirect, =21

REL =tatement, 1-8
PAD instruction, 3-31 REPORT roubine, 3-28, 3-29
PAD, 6-—44

1-4

Representation of fleoating-
point numbers, 2-5
Return stack pointer, 2-2
Reverse Pplish MNotation, 3-1
Right digit zero flag, 2-12, 5=3
RMIDLE, 3-28
Flowchart, B8-1&7
How toc take over, 3-24
ROMFL, 3-27
ROMFL when called, 3-7
ROMINI, 3-7, 3-27
Routines, 8-11
Routines format, B=12
Boutine tables
placement of binary
programs, 6-7
RSELEC, 3-2
RTN instruction, &-45
RULITE, 3-32
Run time routine table, A-8
Fun time table,
tokens, and attributes, 8-1@9

5

SAD instruction,; 3-31, &-45
Save and Get, sample
program, 7-21
S8 instruction, 6-29
SCRATCHEIN statement, 1-8
Secondary attributes, §-10
Secondary attributes, 6-12,
6-13
SET, 6-50
Shell, €6-2
Shift instructions, &-31
Short number representation,
2-8
Simple numeric wvariable, 3-43
Local, 3-43
Remote, 3-43
Simple string variable, 3-45
Local , 3-45
Remote, 3-45
Single-step, 5-5
Software-dedicated register
and EMC pointers, 2-2, 2-3
Source code, 1-1, 7-1
SPARE, 3-28, 3-23, 8-1§8
SPAR1, 3-28, 3-23, 8-1@8

Speaker, 4-14
Stack
Addressing, A-22
Decreasing, 6-22, 6-23
Direct, 6-24
Increasing, 6-22, 6-23, 6-26
indirect, 6-24
Operating, 3-37
Stack Instructions, 6#-21
POFP, £-21
PUSH, 6-21
Stacks, multiple, H-22
Stack operating routines
NARREF, 3-329
NUMCOM, 3-29
NUMVAL, 3-39
REENUM, 3-39
STRCON, 3-39
STREXP, 3-39
STRREF, 3-39
Sktatements, 1-5
Status indicators, 2-8
Status, restoring, 6-44
STEP command, 5-5
STORE instruction, 6-17
String highlight sample
program, 7-2
Strings on the R12 stack,
3-35
STRANGE hook, 3-23
STRCONW, 3-39
STREXF, 3-39
String array wvariable, 3-46
Local, 3-48
Remote, 2-46
String user—-defined functions,
3-43
String values, passing, 1-3
STSIZE, 3-31
Subroutine jumps, 6-39
SVCWRD, 3-18
syntax, 6-15
Syntax guidelines, &-15
System hardware diagram, B-118
System overall flow, 3-6
System memory, 3-2
System monitor, 5-1
System monitor commands, 5-1
System routines, 8-11

System run time table Z
tokens and attributes, B-189
System table, &-7 . Zero flag, 2-12
Zero flag status, 5-3

T

TEr 6_3?

Ten's complement, 2-6, 6-37

Test sample program, 6-5
Control block, 6=6
Program listing, -5

Timers, 4-11
Reading Timer &, 4-13
Setting Timer &, 4-14

Tokens, 3-4, 3-33

Token description, 3-8

Tokens and attributes
system runtime table, 8-109

TRACE, 5-6

TRACE sample output, 5-6

Translating HP-85 programs,
1-3, 1-4

TS instruction, A-38

Two's complement, 6-37

Type, 6-4, 6-11

Typing aids, at breakpoint,

5-2
u
upLs, 7-2
UNL, &-48

User—-defined functions, 3-48

v

?AL; 5—49

Variables
Format, 3-41
Simple numeric, 3-43
Simple string, 3-45
String array, 3-46

X
xComM, 2-3, 3-18

XRJ 6'3ﬁ

I-6

